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Abstract: This paper proposed a spatially adaptive image denoising scheme, which is comprised of two stages. In the first stage, image is 

denoised by using Principal Component Analysis (PCA) with Local Pixel Grouping (LPG). LPG-PCA can effectively preserve the image fine 

structures while denoising. In the second stage, we use Steerable Pyramid Transform (SPT) to decompose images into frequency sub-bands. The 

noise level is updated adaptively before second stage denoising. Steerable Pyramid Transform in the second stage further improves the denoising 

performance. This paper also reviews on the present denoising processes and performs their comparative study. Experimental results demonstrate 

that the proposed PCA-SPT algorithm achieve competitive outcomes. PCA-SPT works well in image fine structure preservation, compared with 

state-of-the-art denoising algorithms. 
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I. INTRODUCTION 

Digital image processing is a discipline that goes 
forward, to grow, with new application being developed at an 
invariably enhancing stride. It is a fascinating and stimulating 
field to be involved in today with application areas ranging 
from the entertainment industry to the space program. In the 
21

st
 century, a digital image is the best possible substitute to 

convey visual information from one place to another. Digital 
image processing is a specific class of signal processing, 
whose primary objective is to extract the essential 
information from the contaminated images. Ideally, this is 
achieved with the help of computers, by applying some best 
available algorithms. As the essential information is 
extracted from the contaminated images the next step is to 
apply standard techniques to it, which will remove the 
artifacts presents in the contaminated image. 

Image denoising shares an eminent portion of digital 
image processing, which is an essential step to remove the 
artifacts and improve the tone of the images. It is a 
prerequisite for many image processing tasks like image 
classification, image registration, image restoration, image 
segmentation and object recognition, where it is essential to 
suppress the artifacts from the noisy image to get the 
approximately original image. Noise will be brought into an 
image through the image acquisition process such as 
quantization, transmission due to a noisy channel and errors 
from the measurement process. Each step of the image 
acquisition process successively degrades image such as 
lenses, film, digitizer, etc. contribute to the degradation 
procedure. 

Image denoising is an obligatory procedure in real world 
applications such as photography where an image was 
necessarily degraded but needs to be improved before it can 
be published. For this type of application, we have to develop 
a model [1], which better describes the degradation process. 

This model helps to determine the inverse process, which can 
be applied to the image to get it back into the original form. 
Space exploration is one such example in which image 
restoration is frequently used to eradicate artifacts, 
generated by mechanical movement of the space vehicle or 
to reduce distortion in the optical system of a telescope. 
Astronomy is another important application, where we 
generally deal with the images of poor resolution. Image 
processing plays an important role in the medical science 
imaging system also, where quality processing techniques are 
required for probing images of unparalleled events and in 
forensic science, to enhance the quality of potentially useful 
photographic evidence of extremely bad quality. 

Usually noise will be necessarily introduced in the image 
acquisition process. Hence it is necessary to remove noise by 
any means before using it in any application, to improve the 
quality of image. From the earlier smoothing filters and 
frequency domain denoising methods [2] to the lately 
developed wavelet [3,4,5,6,7,8,9,10,11,12], curvelet [13] and 
ridgelet [14] based methods, adaptive principle component 
analysis [15], bilateral filtering [16,17], non-local mean 
based methods [18,19], sparse  representation [20] and K-
SVD [21] methods, shape-adaptive transform [22], non-local 
collaborative filtering [23] and local pixel grouping with 
principle component analysis [24] and more, are some of the 
many directions and tools explored in studying this problem. 
With the rapid development of modern digital imaging 
devices and their increasingly wide applications in our daily 
life, there are increasing requirements of new denoising 
algorithms for higher image quality. 

Wavelet transform (WT) [25] has proved to be effective 
in noise removal. It decomposes the input signal into 
multiple scales, which represent different time-frequency 
components of the original signal. At each scale, some 
operations, such as thresholding [3,4]and statistical modeling 
[5,6,7], can be performed to suppress noise. Denoising is 
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accomplished by transforming back the processed wavelet 
coefficients into spatial domain. Late development of WT 
denoising includes ridgelet and curvelet methods for line 
structure preservation. Although WT has demonstrated its 
efficiency in denoising, it uses a fixed wavelet basis to 
represent the image. For natural images, however, there is a 
rich amount of different local structural patterns, which 
cannot be well represented by using only one fixed wavelet 
basis. Therefore, WT-based methods can introduce many 
visual artifacts in the denoising output. 

To overcome the problem of WT, in [15] Muresan and 
Parks proposed a spatially adaptive principal component 
analysis (PCA) based denoising scheme, which computes the 
locally fitted basis to transform the image. Elad and Aharon 
[20,21]proposed sparse redundant representation and K-SVD 
based denoising algorithm by training a highly over-
complete dictionary. Foi et al. [22] applied a shape-adaptive 
discrete cosine transform (DCT) to the neighborhood, which 
can achieve very sparse representation of the image and 
hence lead to effective denoising. All these methods show 
better denoising performance than the conventional WT-
based denoising algorithms. 

Recently established non-local means (NLM) approaches 
[26]use a very different viewpoint from the above methods, 
where the similar image pixels are averaged according to 
their intensity distance. In [18], the NLM denoising 
background was well established. Each pixel is estimated as 
the weighted average of all the pixels in the image, and the 
weights are determined by the similarity between the pixels. 
This structure was enhanced in [19], where the pair wise 
hypothesis testing was used in the NLM estimation. Inspired 
by the achievement of NLM methods, recently Dabov et al. 
[23], proposed a collaborative image denoising scheme by 
patch matching and sparse 3D transform. They searched for 
similar blocks in the image by using block matching and 
grouped those blocks into a 3D cube. A sparse 3D transform 
was then applied to the cube and noise was suppressed by 
applying Wiener filtering in the transformed domain. The so-
called BM3D scheme accomplishes amazing denoising 
results yet its implementation is a little multifarious. 

Recently a novel denoising scheme named LPG-PCA 
[24] is developed which can effectively preserve the image 
fine structures while smoothing noise. By transforming the 
original dataset into PCA domain and preserving only the 
several most significant principal components, the noise can 
be removed. In [15], a PCA-based scheme was suggested for 
image denoising by using a moving window to calculate the 
local statistics, from which the local PCA transformation 
matrix was estimated.  

In this paper we present an efficient LPG-PCA based 
denoising method with steerable pyramid transform (SPT). In 
the proposed PCA-SPT scheme, we model a pixel and its 
adjacent pixels as a vector variable. The training samples of 

this variable are selected by block matching scheme. With 
this LPG technique, the local statistics of the variables can be 
accurately calculated so that the image edge structures can be 
well preserved after shrinkage in the PCA domain for noise 
removal. As shown in Figure 1, the proposed PCA-SPT 
algorithm has two stages. The first stage yields an initial 
estimation of the image by removing most of the noise 
content and the second stage will further refine the output of 
the first stage. 

The first stage use the equivalent procedures as done in 
LPG-PCA denoising scheme, but in the second stage we use 
Steerable Pyramid Transform, to decompose images into 
frequency sub-bands. Before applying the second stage the 
level of noise is updated adaptively. The transform is 
implemented in the Fourier domain [10], allowing exact 
reconstruction of the image from the sub-bands. Since the 
noise is significantly reduced in the first stage, we do not use 
LPG in the second stage, which intern reduces the 
computational cost of the entire scheme. Compared with the 
BM3D algorithm, the proposed PCA-SPT technique can use 
a relatively small local window, like LPG-PCA algorithm to 
group the similar pixels for PCA training with reduced 
computational cost, yet it yields competitive results with 
state-of-the-art BM3D algorithm. 

II. FIRST STAGE DENOISING PROCEDURE 

It is clear that, denoising is a process to estimate and 
remove noise, from the corrupted images, Hence to create a 
denoising model, it is necessary to know about the noise type 
which contaminates the image. Here we assume that the 
noise  which contaminates the original image  is Additive 
White Gaussian Noise with zero mean  and standard 
deviation , i.e. , where  is the noisy image. 
The original image  and noise  are presumed to be 
uncorrelated. The objective of denoising model is to find 

estimation, denoted by  of  from the observation . The 

denoised image  is anticipated to be as close to  as possible. 
The spatial location and intensity are the two parameters 

through which an image pixel may be described, while the 
local structure of the image represented as a set of 
neighboring pixels at different intensity levels. Since most of 
the important information of an image is expressed by its 
edge structures, hence edge preservation is most important in 
image denoising. To achieve the previously specified goal, in 
this paper we model a pixel and its nearest neighbors as a 
vector variable and execute noise reduction on the vector 
instead of the single pixel. 

To model a vector variable we create a  window 
centered on the fundamental pixel to be denoised. It is 
denoted by ,  the vector 
containing all the elements within the window.  

 

Figure 1.  Flowchart of the proposed PCA-SPT denoising scheme. 
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Since the image considered here is noisy, hence it is 

denoted by 



The noisy vector of , where , 

 and ,  to calculate 

 from , we consider them as noiseless and noisy vector 

variables respectively, so that the statistical methods such as 

PCA may be used. 
In order to eliminate the noise from  by using PCA 

transform, a set of training samples of  is required so that 
PCA transformation matrix can be calculated in terms of 
covariance matrix of . To find the training samples, we 
create a training block of size  centered on , 
as demonstrated in Figure 2. It is very easy to take the image 
pixel in each possible block of size  within the training 
block of size   as the samples of noisy variable . 

 
Figure 2.  Illustration of the modeling of first stage denoising 

In this way, there are totally   training 
samples for each component  of . However, there may be 
very different blocks from the given central  block in 
the  training window so that taking all the  
blocks as the training samples of will lead to wrong 
approximation of the covariance matrix of . Inaccurate 
approximation of the PCA transformation matrix will occur 
due to faulty estimate of the training samples, which intern 
increases the noise residuals in the denoised image. Hence, it 
is very essential to select and group the training samples 
before employing the PCA for denoising, which is similar to 
the central  block. 

Grouping of the training samples is same as to the central 
 block in the  training window. It is surely a 

classification scheme that may be realized by various 
techniques such as block matching, correlation-based 
matching, fuzzy clustering [27], K-means clustering [28], 
self-organizing maps [29] etc. and choice of this algorithm is 
based on different criteria. Among them, the block matching 
method is very simple and efficient. Hence we use block 
matching method for local pixel grouping procedure. 

There are totally  possible training blocks of 
 in the  training window. We used the fact that noise 

 is AWGN and uncorrelated with signal. For computing the 
PCA transformation matrix it is necessary, that there should 
be adequate number of samples. To estimate the image local 
statistics optimized training samples are used. They are 
robust and make the algorithm more stable to estimate the 
PCA transformation matrix. The next step is how to calculate 
the noiseless dataset  from the noisy observation . Once 
we get  the central block and the central pixel under test  

 

 
 

Figure 3.  (a) Original image Rajesh; (b) noisy image (PSNR= 28.1 dB); 
(c) denoised image after the first stage of the proposed method (PSNR= 

35.5 dB) and (d) denoised image after the second stage of the proposed 

method (PSNR=36.2 dB). We see that the visual quality is much improved 
after the second stage refinement. 

can be extracted. Now each pixel is processed by such 

scheme, to denoise the entire image . 

III. SECOND STAGE DENOISING PROCEDURE 

As discussed in the above section, LPG-PCA procedure 
will remove most of the noise present in the image under test. 
Still, the denoised image has as much noise residual, which 
makes the image visually unpleasant. Figure 3 shows an 
example of image Rajesh. Figure 3(a) is the original image 
Rajesh; Figure 3(b) is the noisy version of it ( , 
PSNR=28.1dB, SSIM=0.6355); Figure 3(c) is the denoised 
image (PSNR= 35.5 dB, SSIM= 0.9243) by using the basic 
LPG-PCA scheme. Although both the parameters PSNR and 
SSIM are much improved, still we can see much noise 
residual in the output denoising image. One of the basic 
reasons for the presence of noise residual in the denoised 
image is that the original dataset is 
contaminatedwithstrong noise, which makes the covariance 
matrix  noisier and leads to estimation bias of the PCA 

transformation matrix. This in turn degrades the performance 
of denoising procedure. 

Original dataset contaminated with strong noise is 
another reason that leads to LPG errors, which accordingly 
leads to the estimation bias of the covariance matrix  
(or  ). Thus, for a better noise reduction, it is necessary 

to remove noise residuals present after denoising. Since, 
most of the noise is removed by first stage LPG-PCA 
denoising procedure, which can improve the accuracy and 
the estimation of  (or  ) of the denoised image. Now 

to increase the denoising results, it is important to use a 
denoising scheme one more time to denoised image. 
Although, the concept of two stage denoising is already 
established in [24], which uses the same algorithm in the 
refinement of second stage also. We use the same concept in 
this paper, in which we use LPG-PCA for the first stage of 
denoising and SPT for the second stage of denoising. SPT 



Rajesh Kumar Sharma et al, International Journal of Advanced Research in Computer Science, 5 (8), Nov–Dec, 2014,119-127 

© 2010-14, IJARCS All Rights Reserved                                                                                                                                                                                             122 

decomposes images into frequency sub-bands, here the noise 
residuals present after second stage is easily suppressed. 

Noise level should be updated before the second stage of 
proposed denoising method. Here we consider noisy image 

as  and  is the denoised image after first denoising stage. 

Denoised image  can be expressed as , where  is 
the noise residual in the first stage denoised image. To 
initialize the second denoising stage, it is important to 

estimation the level of , which is denoted by . 

Now input it to the second stage of proposed denoising 
method. Noise level  is estimated based on the difference 

between  and . This is expressed by  

 

 
We have: 

 

 

Noise residual  is assumed as the low noise variant of 

noise , and it has only the low frequency portion of .Let 

 is the difference between them and  has only 

the high frequency portion of . There is

. Generally, is very small as 

compared with . For the convenience of development, 

we remove from , and let 

 

Thus from  we have 



In practice  will include not only the noise residual but 

also the estimation error of noiseless image . Therefore, in 

implementation we assume that 



where  is a constant. The value of  is estimated 

experimentally and  around 0.35 gives satisfying results 

for all the test images used in this experiment. 

For second stage of denoising, we use a transform known as 

a steerable pyramid [30,31] to decompose images into 

frequency sub-bands. The procedure for second stage 

denoising uses the structure as: 1) decompose the image in 

sub-bands by pyramid transform at diverse scales and 

orientations; 2) estimate and remove noise from each sub-

band, except for the low pass residual band; and 3) estimate 

inverse pyramid transform, obtaining the denoised image. 

We assume the image is contaminated only by noise 

residuals remains after the first stage denoising. A vector  

corresponding to a neighborhood of observed coefficients 

of the pyramid representation can be expressed as 



where random vector  is a Gaussian scale mixture if and 

only if it can be expressed as the product of a zero-mean 

Gaussian vector  and an independent positive scalar 

random variable as 



Both  and  are zero-mean Gaussian vectors, with 

associated covariance matrices   and . The density of 

the detected neighborhood vector trained on  is a zero-

mean Gaussian, with covariance  



The covariance of neighborhood noise,  is accomplished 

by dividing a delta function into pyramid 

sub-bands, where are the image dimensions. This 

signal has the same power spectrum as the noise, but it is 

free from random fluctuations. Elements of may then 

are computed directly as sample covariance (i.e., by 

averaging the products of pairs of coefficients over all the 

neighborhoods of the sub-band). This technique is certainly 

comprehensive for nonwhite noise, by swapping the delta 

function with the inverse Fourier transform of the square 

root of the noise power spectral density. Note that the entire 

procedure may be performed off-line, as it is signal 

independent. Given , the signal covariance  can 

becomputed from the observation covariance matrix .We 

compute  from  by taking expectations over : 



Without loss of generality, we set , resulting in:  



We force to be positive semi definite by performing 

Eigen vector decomposition and setting any possible 

negative Eigen values (nonexistent or negligible, in most 

cases) to zero. Figure 3(d) shows the denoising results 

(PSNR=36.2 dB) of Image Rajesh after the second 

denoising stage. Although the PSNR is improved by only 

0.7 dB, but the visual quality of the image is much improved 

by effectively removing the noise residual in the second 

denoising stage. 

IV. EXPERIMENTAL RESULT AND ANALYSIS 

The concept of the proposed PCA-SPT algorithm is 
carried from the antecedently developed LPG-PCA 
denoising algorithm. The proposed PCA-SPT algorithm is a 
prolongation of the LPG-PCA denoising algorithm [24].We 
used 8 different images to enumerate the performance of the 
proposed algorithm. Our dataset includes standard test 
images and one image of the author. We will evaluate the 
data for Barbara, Boat, Cameraman, House, Lena, Monarch, 
Peppers and Rajesh shown in Figure 4. All of our images are 
8-bit gray scale images of dimension and are 
converted to same image format (i.e. TIF) using MATLAB. 

The results presented in this paper are obtained by adding 
simulated AWGN to true noiseless images. After denoising 
the results are compared with the true noiseless image for 
performance evaluation. Due to the space limitation, we 
demonstrate the comparison result of proposed scheme with 
only some values of noise level. We analyzed the complete 
dataset of test images with noise levels 
i.e. . 

To represent the denoising performance of our algorithm, 

we compare the proposed scheme with four representative 

and state-of-the-art denoising algorithms: the wavelet-based 

denoising methods [3,6]; Po-Edges denoising methods[10]; 

LPG-PCA denoising method [24] and the recently developed 

BM3D denoising method[23]. The BM3D algorithm is state-

of-the-art denoising algorithm and it has been considered as a 

standard for developing novel denoising algorithm. 

All implementations of the related work were coded in 

MATLAB v8.1 (R2013a). Computations were performed 

with an Intel Pentium 4 CPU at 3.00 GHz and 2 GB memory, 

employing a 32-bit Windows7 operating system. Along with 

the MATLAB software, Image Processing toolbox is also  
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Figure 4.  The test images Barbara, Boat, Cameraman, House, Lena, Monarch, Peppers, and Rajesh 

Table I.  The PSNR (dB) and SSIM results of the denoised images in the two stages by the proposed PCA-SPT method. 

Image Barbara Boat Cameraman House 

Stage - I     

 34.1 (0.9314) 33.0 (0.9086) 33.5 (0.9026) 35.6 (0.8954) 

 30.0 (0.8387) 28.8 (0.7888) 29.3 (0.7704) 31.6 (0.7750) 

 27.4 (0.7396) 26.6 (0.6817) 27.0 (0.6481) 28.9 (0.6535) 

 25.6 (0.6519) 24.9 (0.5882) 25.2 (0.5406) 26.9 (0.5487) 
Stage - II     

 34.5 (0.9418) 33.2 (0.9191) 33.7 (0.9252) 36.2 (0.9134) 

 30.7 (0.8821) 29.3 (0.8331) 30.0 (0.8654) 33.1 (0.8643) 

 28.5 (0.8244) 27.4 (0.7717) 28.0 (0.8124) 31.1 (0.8331) 

 27.0 (0.7809) 26.0 (0.7196) 26.6 (0.7751) 29.8 (0.8063) 

 
Image Lena Monarch Peppers Rajesh 

Stage - I     

 34.0 (0.9174) 33.7 (0.9397) 33.9 (0.9089) 35.5 (0.9243) 

 29.9 (0.8180) 29.5 (0.8531) 30.0 (0.8123) 31.1 (0.8133) 

 27.5 (0.7146) 26.9 (0.7586) 27.5 (0.7041) 28.5 (0.7004) 

 25.7 (0.6210) 25.2 (0.6766) 25.6 (0.6057) 26.5 (0.5978) 
Stage - II     

 34.4 (0.9308) 33.9 (0.9538) 34.2 (0.9217) 36.2 (0.9464) 

 30.7 (0.8776) 30.2 (0.9129) 30.7 (0.8745) 32.4 (0.9020) 

 28.6 (0.8303) 27.8 (0.8692) 28.6 (0.8292) 30.4 (0.8633) 

 27.2 (0.7911) 26.4 (0.8336) 27.1 (0.7929) 28.7 (0.8295) 

The value in the parenthesis is the SSIM measure 

required which contain a family of related M-files and 
possibly MEX-files. 

PSNR and SSIM [32] values of the first stage and second 
stage of the proposed scheme on the set of test images are 
enlisted in Table I and Second stage of the proposed method 
verify that the improvement of the PSNR values. On the 
observation of the result, we ensure that the second stage of 
the proposed algorithm can improve the values of PSNR 
from 0.2–2.9 dB. For different images under different noise 
level (  is from 10 to 40). Sometimes values of PSNR 
measure will not improve so much in the second stage, thus 
another parameter called SSIM[32] is used to represent the 
image visual quality. For instance, image Monarch, with 
noise level , the SSIM measure is much increased 
from 0.7586 to 0.8692 after the second stage refinement, 
while the PSNR is raised by only 0.9 dB. 

PSNR and SSIM measures of previously established 
denoising scheme and the proposed method on the 8 test 
images are summarized in Table II. Let’s first see the PSNR 
measures by different methods. From Table II we observe 
that the BM3D filtering method of denoising has the highest 
PSNR measures. The PSNR result of proposed method is 
higher than the wavelet [3,6], Po-Edges [10], LPG-PCA 
[24]and the wavelet-based method [3,6] has the lowest PSNR 
value. Let’s then focus on the SSIM measure and the visual 
quality evaluation of these denoising algorithms. From Table 
II it is clear, that BM3D has the highest SSIM measures. The 
proposed PCA-SPT has higher SSIM measures than LPG-
PCA [24]. Again, the wavelet-based denoising methods have 
the lowest SSIM measures. 

Due to the limitation of space, in this paper we can only 
show partial denoising results. Figure 5 and Figure 8 show 
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the denoising results of the two test images with noise 
level  by different methods. The subfigure (a) is the 
original image; subfigures (b–f) are the denoised images by 
the scheme in [3,6], [10], [24], [23]and the proposed PCA-
SPT method respectively. We see that although BM3D has 
higher SSIM measures than proposed PCA-SPT method, 
their denoised images are analogous in real visual 
observation, and they have much improved visual quality 
than all the other techniques. Graphical representation of 
PSNR and SSIM measures for image Monarch by different 
schemes are shown in Figures 6-7and for image Peppers in 
Figures 9-10 respectively. 

The graph shows that when the PSNR measure of the 
proposed scheme is almost equals to the other methods the 
SSIM measure has a great variance even for the high noise 
level. The LPG-PCA scheme generates many artifacts in the 
denoised image. The wavelet based denoising methods 
[3,6]have the worst visual quality. This is because in WT, the 
fixed wavelet basis function is used to de-correlate the many 
different image structures. Often this is not efficient enough 
to represent the image content so that many denoising errors 
appear. 

 

Table II.  The PSNR (dB) and SSIM results of the denoised images at different noise levels and by different schemes. 

Methods [3,6] [10] [24] [23] Proposed 

Barbara      

 31.8 (0.8900) 33.5 (0.9266) 34.4 (0.9399) 34.5 (0.9443) 34.5 (0.9418) 

 28.3 (0.7976) 29.7 (0.8484) 30.6 (0.8753) 30.9 (0.8830) 30.7 (0.8821) 

 26.5 (0.7360) 27.6 (0.7880) 28.4 (0.8129) 28.9 (0.8315) 28.5 (0.8244) 

 25.4 (0.6957) 26.5 (0.7482) 26.8 (0.7550) 27.3 (0.7875) 27.0 (0.7809) 

Boat      

 32.0 (0.8926) 32.9 (0.9140) 33.1 (0.9184) 33.4 (0.9228) 33.2 (0.9191) 

 28.2 (0.7956) 29.1 (0.8293) 29.2 (0.8281) 29.7 (0.8463) 29.3 (0.8331) 

 26.1 (0.7189) 27.1 (0.7599) 27.1 (0.7527) 27.7 (0.7860) 27.4 (0.7717) 

 24.9 (0.6655) 25.8 (0.7105) 25.7 (0.6895) 26.3 (0.7338) 26.0 (0.7196) 

Cameraman      

 32.4 (0.8914) 33.2 (0.9114) 33.7 (0.9255) 34.2 (0.9319) 33.7 (0.9257) 

 28.4 (0.8010) 29.3 (0.8384) 29.9 (0.8551) 30.5 (0.8755) 30.0 (0.8654) 

 26.4 (0.7461) 27.4 (0.7836) 27.9 (0.7933) 28.6 (0.8373) 28.0 (0.8124) 

 25.1 (0.7006) 26.0 (0.7450) 26.5 (0.7369) 27.2 (0.8057) 26.6 (0.7751) 

House      

 34.1 (0.8659) 35.3 (0.8928) 36.2 (0.9154) 36.7 (0.9219) 36.2 (0.9134) 

 30.9 (0.8027) 32.1 (0.8416) 33.0 (0.8593) 33.8 (0.8722) 33.1 (0.8643) 

 29.0 (0.7627) 30.3 (0.8123) 31.0 (0.8128) 32.1 (0.8482) 31.1 (0.8331) 

 27.7 (0.7409) 29.0 (0.7853) 29.5 (0.7668) 30.7 (0.8269) 29.8 (0.8063) 

Lena      

 32.8 (0.9004) 33.9 (0.9218) 34.3 (0.9294) 34.5 (0.9316) 34.4 (0.9308) 

 28.9 (0.8198) 30.2 (0.8637) 30.5 (0.8684) 30.9 (0.8832) 30.7 (0.8776) 

 26.9 (0.7596) 28.2 (0.8125) 28.4 (0.8097) 28.9 (0.8435) 28.6 (0.8303) 

 25.5 (0.7049) 26.8 (0.7689) 26.9 (0.7552) 27.4 (0.8052) 27.2 (0.7911) 

Monarch      

 32.2 (0.9242) 33.3 (0.9426) 34.0 (0.9530) 34.1 (0.9557) 33.9 (0.9538) 

 28.0 (0.8507) 29.4 (0.8933) 30.0 (0.9053) 30.4 (0.9179) 30.2 (0.9129) 

 25.9 (0.7903) 27.3 (0.8487) 27.7 (0.8539) 28.4 (0.8822) 27.8 (0.8692) 

 24.5 (0.7488) 25.7 (0.8124) 26.1 (0.8029) 26.7 (0.8446) 26.4 (0.8336) 

Peppers      

 32.8 (0.8919) 33.6 (0.9119) 34.0 (0.9199) 34.7 (0.9282) 34.2 (0.9217) 

 29.0 (0.8160) 30.1 (0.8563) 30.5 (0.8637) 31.3 (0.8868) 30.7 (0.8745) 

 27.0 (0.7616) 28.2 (0.8197) 28.4 (0.8111) 29.3 (0.8505) 28.6 (0.8292) 

 25.5 (0.7175) 26.6 (0.7748) 27.0 (0.7615) 27.7 (0.8158) 27.1 (0.7929) 

Rajesh      

 34.4 (0.9155) 35.9 (0.9387) 36.0 (0.9414) 36.6 (0.9496) 36.2 (0.9464) 

 30.6 (0.8492) 32.2 (0.8923) 32.1 (0.8863) 33.0 (0.9109) 32.4 (0.9020) 

 28.6 (0.7967) 29.9 (0.8529) 29.8 (0.8313) 30.9 (0.8739) 30.4 (0.8633) 

 27.0 (0.7506) 28.4 (0.8204) 28.2 (0.7792) 29.3 (0.8388) 28.7 (0.8295) 

The value in the parenthesis is the SSIM measure 
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Figure 5.  The denoising results of Monarch by different schemes. (a) 

Noiseless Monarch; denoised images by methods (b)[3,6]; (c) [10]; (d) [24]; 
(e) [23]; and (f) the proposed PCA-SPT method. 

 

Figure 6.  Graphical representation of PSNR measure (in dB) for 

imageMonarch by different schemes. 

 

Figure 7.  Graphical representation of SSIM measure for imageMonarch by 

different schemes. 

 

   

   

Figure 8.  The denoising results of Peppers by different schemes. (a) 

Noiseless Monarch; denoised images by methods (b)[3,6]; (c) [10]; (d) [24]; 
(e) [23]; and (f) the proposed PCA-SPT method. 

 

Figure 9.  Graphical representation of PSNR measure (in dB) for image 

Peppers by different schemes. 

 

Figure 10.  Graphical representation of SSIM measure for image Peppers by 

different schemes. 
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The proposed PCA-SPT denoising procedure uses PCA to 
adaptively compute the local image decomposition transform 
so that it can better represent the image local structure. In 
addition, the SPT operation is employed to eliminate the noise 
residuals present after first stage denoising, that decompose 
images into frequency sub-bands. Before applying the second 
stage the level of noise is update adaptively. The transform is 
implemented in the Fourier domain, allowing exact 
reconstruction of the image from the sub-bands. The denoised 
images by BM3D and the proposed scheme are very 
comparable in terms of visual quality. Both of them can well 
preserve the image edges and remove the noise without 
introducing too many artifacts. Although the PSNR and SSIM 
measure of PCA-SPT are lower than that of BM3D, PCA-SPT 
has competitive results in the preservation of small edge 
structure as the original LPG-PCA method.  

BM3D works better in preserving large-grain edges and 
denoising smoothing areas (e.g. the image Peppers), where 
there are a rich amount of non-local redundancies that could be 
exploited, while PCA-SPT works well in preserving small-
grain edges (e.g. the image Monarch), where BM3D may 
generate some artifacts because there are not so many non-local 
redundancies around those structures. 

In summary, as a non-local collaborative denoising scheme, 
BM3D can successfully exploit the non-local redundancy in the 
image to suppress noise. Therefore, it could have very high 
PSNR and SSIM measures. However, for fine-grain structures, 
improper non-local information may be introduced by BM3D 
for image restoration so that errors may be produced in those 
areas. Although the LPG-PCA scheme works well for fine-
grain preservation but its computational cost is high than PCA-
SPT since it uses block matching in both stages. The 
computational cost of PCA-SPT is very low than LPG-PCA 
algorithm, hence PCA-SPT works well in small structure 
preservation with low computational cost. 

V. CONCLUSION 

The proposed PCA-SPT denoising method employs PCA 
transform with LPG in first stage. Principal component analysis 
adaptively calculate the vector decomposition of the target 
image, hence it can better represent the local structure of image 
and local pixel grouping, which ensure that only the right 
samples of pixels are needed in the training of PCA transform. 
In addition to PCA with LPG operation we incorporate the 
second stage, in which SPT is used. Computational cost of the 
second stage is approximately one fourth of the first stage of 
LPG-PCA algorithm. Thus the overall cost of the proposed 
algorithm is very low and we get the denoising result in less 
time than that required in LPG-PCA algorithm. It provides a 
good compromise between the accuracy and the execution 
time: it is much faster and considerably more accurate than the 
LPG-PCA algorithm. 
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