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Abstract - Although an ant is a small and simple creature, but collection of ants or a a colony of ants performs useful tasks such as finding the 

shortest path to a food source and sharing this information with other ants by depositing pheromone. In the field of ant colony optimization 

(ACO), models of collective intelligence of ants are transformed into useful optimization techniques that find applications in computer 

networking. In this paper we present an implementation of Artificial Intelligence on any communication network and compare the results thus 

produced with the traditional routing algorithm like the shortest node first. The problem of routing and congestion are of utmost concern for the 

design and implementation of any communication network. Here in this paper we present an approach of performing routing with automatic 

congestion control and loop removal using artificial intelligence. For the purpose of demonstrating the results of our findings we have designed a 

simulation of a communication network. We also performed a search space optimization process in order to find out the most appropriate 

algorithm to be implemented. The comparison and analysis of AI and Non AI modes is performed and is displayed in terms of different graphs. 

The proposed implementation of AI techniques in routing and congestion control provides a better solution than the traditionally available 

methods. The algorithm used for dynamic routing is ACO (Ant Colony Optimization) Algorithm which is a metaheuristic algorithm belonging to 

the class of Swarm Intelligence Algorithms. 
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I. INTRODUCTION 

With the growing importance of telecommunication 

more complex networked systems are being designed and 

produced. The challenge of competing with numerous 

complexities of networking problems such as load 

balancing, routing and congestion control produce the need 

for more sophisticated (and perhaps more intelligent) 

techniques to solve these issues. Working on some of the 

computing methods inspired by social insects such as ants, 

several mo-bile agent-based paradigms were designed to 

solve control and routing problems in telecommunication 

and networking. Al-though by itself, an ant is a simple and 

unsophisticated creature, collectively a colony of ants can 

perform useful tasks such as building nests, and foraging 

(searching for food). What is interesting is that ants are able 

to discover the shortest path to a food source and to share 

that information with other ants via stigmergy. Stigmergy is 

basically a form of indirect communication used by ants in 

nature to coordinate their problem-solving activities. Ants 

achieve stigmergic communication by laying a chemical 

substance called pheromone that induces changes in the 

environment which can be sensed by other ants [1].  

In recent years, computer scientists were able to 

transform the models of collective intelligence of ants into 

useful optimization and control algorithms. In this new field  

of ant colony optimization (ACO), a colony of (biological) 

ants is typically modelled as a society of mobile agents (or 

artificial ants). Although ACO has been applied in many 

combinatorial optimization problems such as the 

asymmetric travelling salesman problem, graph colouring 

problem and vehicle routing problem, this manuscript 

focuses on surveying ACO approaches in network routing 

and load-balancing. In applying ACO in network routing 

and load-balancing, an artificial ant is typically realized as a 

simple program consisting of simple procedures that 

simulate the laying and sensing of pheromone, and data 

structures that record trip times and the nodes that it passes. 

 

Migrating from node to node, an artificial ant emulates 

laying of pheromone by updating the corresponding entry in 

the routing (or pheromone) table in a node which records, 

for example, the other nodes that this node is directly 

connected. While a more detailed exposition of the problem-

solving paradigm of ACO is given using an example later, 

the differences between ACO and traditional routing 

algorithms are discussed later. 

II. ANT COLONY OPTIMIZATION 

This section describes the problem solving paradigm of 

ACO in finding an optimal path. Suppose that there are four 

ants and two routes leading to a food source: R1 and R2 

such that R1>R2. Along the two routes, there are six nodes: 

N (Nest), N1, N2, N3, N4 and F (Food Source). Initially all 

ants (A1, A2, A3, A4) are at the decision point N and they 

have to select between R1 and R2 to reach F. 

 

Figure 13 Problem Solving of ants 
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a. At N, all ants have no knowledge about the location of 

food. Hence they randomly select from {R1, R2}. 

Suppose that A1 and A2 choose R1, and A3 and A4 

choose R2. 

b. As A1 and A2 move along R1 and A3 and A4 move 

along R2 they leave certain amount of pheromone 

along their paths _R1 and _R2, respectively. 

c. Since R2<R1 A3 and A4 reach F before A1 and A2. 

When A3 and A4 pass R2 to reach F, _R2=2, but A1 

and A2 have yet to reach F and _R1=0. To return to N 

from F, A3 and A4 have to choose between R1 and 

R2. At F, A3 and A3 and A4 detects that _R2>_R1, 

hence they are more likely to select R2. Suppose A3 

and A4 select R2. 

d. As A3 and A4 pass R2 for the second time to reach N, 

_R2 is incremented to 4. The increase in _R2 is further 

consolidates R2 as the shorter path. When A1 and A2 

reach F, _R2=4 and _R1=2. Hence, A1 and A2 are 

more likely to select R2 to return to N. In this example 

any ant at F (respectively N) will be able to determine 

the optimal path once A3 and A4 reach F (respectively 

N). If an ant is at a choice point where there is no 

pheromone, it makes a random decision with 

probability 0.5 of choosing R1 or R2. However then 

The example in Fig. 1 is an illustration. Here in this 

figure the model adopted is one in which the pheromone is 

laid both during the trip to and from the point F. However in 

privileged pheromone laying the pheromone is laid only 

during the return trip. 

III. ACO VERSUS TRADITIONAL ROUTING 

In this section, the differences between ACO routing 

and traditional routing algorithms such as the distance 

vector routing or link state routing are discussed [2]. Of 

particular interest are the issues of 

A. routing information; 

B. routing overhead; 

C. adaptivity and stagnation. 

A. Routing Information: 

In traditional routing algorithms, a node depends on the 

routing information furnished by all its neighbouring nodes 

to construct a complete routing table. Furthermore, the 

neighbouring nodes of any node Ni in turn depend on the 

routing information of their neighbouring nodes which in 

turn depend on other neighbouring nodes. 

In ACO, the paths from a source to a destination are 

explored independently and parallely. As and when  an ant 

arrives at a node, then and there the  corresponding 

pheromone value for a path is updated; hence, each entry of 

a pheromone table in a node is updated independently. This 

node can immediately use the information in its pheromone 

table to route data packets to new node depending on the 

updated information. 

B. Routing Overhead: 

Traditional routing involves the transmission of routing 

tables of each node N, to every one of the neighbours. For a 

large network, the routing table of each of the nodes consist 

of cost vectors to all other nodes Ni, which is quite large. 

Since each Ni needs to transmit its routing table to every one 

of its neighbours, this routing overhead can be very large. 

Routing in ACO is achieved by transmitting ants rather than 

routing tables or by flooding LSPs. Even though it is noted 

that the size of an ant may vary in different 

systems/implementations, depending on their functions and 

application, but actually , the size of ants is comparitively 

small, in the order of 6 bytes and thus the overhead is quite 

small. 

C. Adaptivity and Stagnation: 

In dynamic networks, transmitting large routing table or 

flooding multiple copies of LSPs in short or regular intervals 

may incur large routing overhead. However, flooding LSPs 

and transmitting routing table in longer intervals may result 

in slower responses to changes in network topology. Since 

ants are relatively small they can be piggybacked in data 

packets, and more repetitive  transmission of ants provide 

updates of routing information . Hence, the use of ACO for 

routing in dynamic network seems to be appropriate [6]. 

 
Table 3. ACO vs RIP 

Related to the issue of adaptivity is stagnation. 

Stagnation occurs when a network reaches its convergence 

(or equilibrium state); an optimal path is chosen by all ants 

and this recursively increases an ant’s preference for P 

(optimal path). This lead to: 

a. congestion of P, 

b. dramatic reduction of the probability of selecting 

other paths. The two are undesirable for a dynamic 

network since: 

a. P may become non-optimal if it is congested; 

b. P may be disconnected due to network failure; 

c. The remaining non-optimal paths may become 

optimal because of the  changes in network 

topology, and iv) new or better paths may be 

discovered.  

These limitations of stagnation are removed by using 

the techniques of: 

a. Evaporation 

b. Ageing 

c. Pheromone Smoothing 

d. Pheromone Heuristic Control 

e. Privileged Pheromone Laying 

IV. NETWORK SIMULATION 

For the purpose of implementation a bi-directional,    

unweighted topological network consisting of 30 nodes has 

been created and closely resembles any communication 
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network. After a basic number of parameters have been set 

the simulation is  made to run. Firstly all the pheromone 

tables are set to default having equal weights and then calls 

are generated and placed on  network. Initially the routes 

selected are random. If a call cannot connect to  node it is 

forced to wait and the wait counter is enumerated to reflect 

the quantum (in timer ticks). Once a node has reached its 

final or destination node it will work its way backwards 

altering the local nodes pheromone table as it traverses. The 

shorter the route  the greater  is the increase in probability 

given to its table entry in the pheromone table. This happens 

again and again until the weight of the fastest node is shifted 

such that slower routes have a very low probability of being 

chosen [3]. 
 

 

Figure 14 Main Application 

V. COMPUTATIONAL DETAILS 

General ACO algorithm that we used for our simulation 

uses following: 

A. ACO Pseudo code: 

Set parameters; initialize pheromone trails 

SCHEDULE_ACTIVITIES 

ConstructAntSolutions 

UpdatePheromones 

END_SCHEDULE_ACTIVITIES 

B. Edge Selection: 

An ant will move from the node i to the  node j with a 

probability  

  

 is the amount of pheromone on edge i,j 

 is a parameter to control the influence of i,j 

 i,j, is the desirability of edge i,j (a prior knowledge, like 1 

/ di,j, where d is the distance)  

 is a parameter to control the influence of _i,j 

C. Pheromone Update: 

 i,j = (1 −  ) i,j +△ i,j 

Where i,j is the amount of pheromone on a given edge 

i,j,  is the rate of pheromone evaporation and △ i,j is the 

amount of pheromone deposited, typically given by [4] 

 

△  

Where Lk is the cost of the kth ant's tour (typically 

length). 

VI. ROUTING MECHANISM 

To begin with, each possible path has an even 

likelihood of getting chosen. The  ant is placed on a network 

of 4 nodes with the source node of 1 and destination node 2. 

A chance mechanism is invoked and a path is chosen. 

 

Figure 15: Network graph and table 

In this case node 2 has been selected and the ant arrives 

at its source destination. The ant then moves and updates the 

pheromone tables for the visited nodes with higher (and 

more mathematically biased) values. This would be founded 

for figure 3.2 and table 3.2 in the following way [7]: 

a. Node 2 was the final destination 

b. It took 1 hop to reach its destination 

c. Divide 1 (hop) by 100 : 100% 

d. Add 100 to the probability value of node 2 (currently 

33.3333): 133.3333 

e. Add the values of the other nodes to 133.3333 

(133.3333+ 33.3333 + 33.3333): 200 (approximately) 

f. Calculate the ratio: ratio = 100/200 0.5 

g. Fix  the probability of the node to its current value 

multiplied by the ratio 

h. Node 2: 133.3333 * ratio (0.5) = 66.6666% 

i. Node 3: 33.3333 * ratio (0.5) = 16.6666% 

j. Node 4: 33.3333 * ratio (0.5) = 16.6666% 

k. Node 2 (66.6666%) + Node 3 (16.6666%) + Node 4 

(16.6666%) = 99.9999% 

 

Figure 16: Modified graph and table 

In our project we have devised a pheromone base model 

for determination of the next node from any given present 

node. 
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a. Present Node (i.e. Pheromone table for given node) 

b. Destination Node 

c. Next Possible Node 

d. Fitness Value 

[Here the term fitness value determines the next node to 

be selected from the given present node. Fitness value is 

calculated as fraction of pheromone on this path to the total 

path multiplied by 100. This gives the percentage 

probability of the present path to be chosen [5]. The typical 

structure of any node’s pheromone table looks like: 

Table 4: Pheromone probability table 

 

VII. ANALYSIS 

In order to determine the effect of using the ACO 

algorithm on Dynamic routing the following type of 

simulations are performed with varying network and 

algorithm parameters. 

The graphs thus obtained give a general quantitative 

measure of the effect of ACO in Routing. 

A. ACO vs. Non ACO Mode: 

To analyse the result of using the AI method (ACO) on 

a communication network it is compared to a Non-Ai mode. 

For that the simulation is run for both ACO and Non ACO 

modes with same parameters for network. The results thus 

obtained are analysed graphically analysed. The use of ACO 

generally results in a decrease in the average number of 

hops. First curve denotes simulation without ACO and the 

other one denotes simulation with ACO. 

B. Insertion of ACO in between a Non ACO Mode: 

To view the algorithm from a different perspective the 

following procedure is followed: first the simulation is run 

with the ACO algorithm off and then in the next run of the 

simulation ACO is activated on the 500th call. This can be 

identified by a label and follows with a decline of average 

hops. The simulation is run for different number of calls and 

with different parameters and it is always observed that 

turning ON the ACO always results in a decrease in the 

average number of hops. Simulation curve denotes 

simulation without ACO and the other curve denotes 

simulation with ACO turned ON at 500th call. 

C. Adaptivity Curve: 

In order to observe the result of failure of some nodes 

or routers in between (which is a very obvious error that can 

occur in the communication networks). We have simulated 

the same situation in our algorithm as well. For an ACO 

mode network to be successful it should always work in the 

case of failure or removal of some of the nodes. Again by 

running the simulation a number of time we obtained that 

the ACO handles Adaptivity quite well. Even in case of 

failure of some of the nodes the ACO algorithm performs as 

expected and decreases the average number of hops 

traversed in the call completion. 

D. Loop Removal: 

Before an Ant returns back to its source node, an 

optimization technique of loop elimination can be invoked. 

The issue  amongst loops is that they can get several times, 

the amount of pheromone than they should lead to the 

problem of self reinforcing loops. In order to *prevent such 

self enforcing loops we have taken some precautions and in 

order to check the validity of the methods we adopt to 

prevent the ants following the same routs on the loop we 

have used this test. The first curve shows ACO mode 

without loop removal and the second one denotes ACO 

mode with loop removal. It was observed that ACO 

performs better with loop removal strategy. 

VIII. CONCLUSION 

In this project, an exposition of the basic problem-

solving paradigm of ACO was given. The differences 

between ACO and traditional routing algorithms were 

compared along the issues of routing information, routing 

overhead and adaptivity. Further an approach of using ACO 

for dynamic routing on any communication network is 

presented. The routing tables are generated on the basis of 

the pheromone count being updated continuously. The 

results thus obtained with ACO mode of routing are 

compared with the Non-ACO mode of routing in a 

simulation and the results were plotted in terms of number 

of intermediate hops versus the number of calls made. On 

comparison it was found that the ACO mode always results 

in reduction of the intermediate nodes while in completion 

of the calls. Thus ACO provides afield for future research in 

application of AI in routing. 
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