
Volume 4, No. 8, May-June 2013

International Journal of Advanced Research in Computer Science

REVIEW ARTICAL

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 288

ISSN No. 0976-5697

A Review: Vertical Partitioning Algorithms to Handle Dataload on Distributed
Databases

Kamaljeet kaur*, Jaspreet kaur
Assist Prof(CSE Deptt)*, Student of M.Tech(CSE)

Sri Guru Granth Sahib World University
Fatehgarh Sahib,Punjab(India)

preetlotey89@gmail.com

Abstract: Relational databases are widely used in many applications to store data. But there are many problems with relational databases like
scalability, handling real time data and handling unstructured data like data on web is not properly structured, it is semi structured or
unstructured. To overcome these problems non-relational databases come in to existence. Non-relational databases are growing these days.. Non
relational databases deals with the concept of partitioning to handle the different data load on distributed machines. Non relational databases
deals with vertical partitioning method which is based on hash partitioning, range partitioning, list partitioning to handle the better data load into
some extent. This paper deals with vertical partitioning method as vertical partitioning is applied in three contexts: a database stored on devices
of a single type, a database stored in different memory levels, and a distributed database. In distributed databases, fragment allocation should
maximize the amount of local transaction process. In this paper, we study on distributed databases and summarizes the problems of data
fragmentation, allocation and replication in distributed database.

Keywords- Relational databases, vertical partitioning method, distributed database, fragment allocation, dataload.

I. INTRODUCTION

Non-relational databases are very popular and in use
these days because of their various advantages over the
relational databases like handle various types of data like
key-value, column and document, semi structured and
structure data. These databases can handle very large
amount of data and also provide greater scalability that is
why these are very useful to use in distributed environment
like in cloud and grid computing applications.[1]

A partition is a division of a logical database or its
constituting elements into distinct independent parts.
Database partitioning is normally done for manageability,
performance or availability reasons. Data Partitioning is also
done using vertical partitioning. We can put different
columns on different partitions[2].Partitioning of database is
done on several ways: vertical, horizontal and
mixed(hybrid). Vertical partitioning subdivides attributes
into groups and assigns each group to a physical object.
Horizontal partitioning subdivides object instances (tuples)
into groups, all having the same attributes of the original
object. We refer to the physical objects that are a result of
vertical or horizontal partitioning as horizontal or vertical
fragments. In this paper we study on various partitioning
algorithms using vertical partitioning technique to partition
the dataload on distributed machines. It overcomes most of
the problems which are used in horizontal partitioning.
a. Efficient performance on aggregation queries (like

COUNT, SUM, AVG, MIN, MAX)[4]
b. True scalability and fast data loading for Big Data .[5]
c. Provides hard disk access and reduce disk space .[4]
d. Improved Bandwidth Utilization.

Figure-1 Vertical Partitioning[3]

A. Further vertical partitioning schemes is based
on:-
a. Range Partitioning:- It is a partitioning technique

where ranges of data is stored separately in different
sub-tables. It maps data to partitions based on ranges
of values of the partitioning key that is used for each
partition. It is the most common type of partitioning
and is often used with dates. For a table with a date
column as the partitioning key, the janurary
2005 partition would contain rows with partitioning
key values from 01-Jan-2005 to 31-Jan-2005. For
example, splitting up sales transactions by what year
they were created or assigning users to servers based
on the first digit of their zip code. The main problem
with this approach is that if the value whose range is
used for partitioning isn't chosen carefully then the
scheme leads to unbalanced servers.[2]

b. Hash Partitioning:- With this approach, each entity
has a value that can be used as input into a hash
function whose output is used to determine which
database server to use. This is typically used where
ranges aren't appropriate, i.e. employee number,
productID.[1] Hash partitioning maps data to partitions
based on a hashing algorithm that applies to the
partitioning key that you identify. The hashing

Jaspreet kaur et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,288-291

© 2010, IJARCS All Rights Reserved 289

algorithm evenly distributes rows among partitions,
giving partitions approximately the same size. For
example- if you have ten database servers and your
user IDs were a numeric value that was incremented by
1 each time a new user is added. In this example, the
hash function is performed on the user ID with the
number ten and then pick a database server based on
the remainder value. This approach should ensure a
uniform allocation of data to each server. The key
problem with this approach is that it effectively fixes
your number of database servers since adding new
servers means changing the hash function.[2] [3]

c. List Partitioning:- List partitioning enables you to
explicitly control how rows map to partitions by
specifying a list of discrete values for the partitioning
column in the description for each partition. The
advantage of list partitioning is that you can group and
organize unordered and unrelated sets of data in a
convinent way. For a table with a region column as the
partitioning key, the North America partition might
contain values Canada, USA, and Mexico.[2][3]

II. TYPES OF VERTICAL PARTITIONING
ALGORITHMS

Improving the performance of a database system is one
of the key research issues now a day. Distributed processing
is an effective way to improve reliability and performance of
a database system. Distributed and parallel processing on
database management systems (DBMS) is an efficient way
of improving performance of applications that manipulate
large volumes of data[6]. This may be accomplished by
removing irrelevant data accessed during the execution of
queries and by reducing the data exchange among sites,
which are the two main goals of the design of distributed
databases. Distribution of data is a collection of
fragmentation, allocation and replication processes. There
are two aspects of distribution design: fragmentation and
allocation.[6]Fragmentation is a design technique to divide a
single relation or class of a database into two or more
partitions such that the combination of the partitions
provides the original database without any loss of
information.

This reduces the amount of irrelevant data accessed by
the applications of the database, thus reducing the number of
disk accesses. Fragmentation can be horizontal or
vertical[7]. Horizontal fragmentation (HF) allows a relation
or class to be partitioned into disjoint tuples or instances.
Vertical fragmentation (VF) allows a relation or class to be
partitioned into disjoint sets of columns or attributes except
the primary key. Various partitioning algorithms are
discussed to solve the problem of data fragmentation,
allocation and cost of transactions in distributed database.
The partitioning algorithms use some heuristics to create
fragments of a relation.[7]

Input:-The input to most of these algorithms is an
Attribute Usage Matrix (AUM). AUM is a matrix, which
has attributes as columns, and queries as rows and the
accesses frequency of the queries as values in the matrix.
Most of data fragmentations algorithms use an Attribute
Affinity Matrix (AAM) derived from the AUM provided as
input[8]. An AAM is a matrix in which for each pair of
attributes, the sum total of frequencies of queries accessing
that pair of attributes together is stored. The input to the

vertical partitioning algorithm is an attribute usage matrix.
The algorithms are discussed below:-
A. Bond energy algorithm:- The Bond Energy Algorithm

(BEA) is used to group the attributes of a relation
based on the attribute affinity values in AAM. It is
considered appropriate for the following reasons:- [8]

a. It is designed specially to determine groups of similar
items as opposed to a linear ordering of the items. (ie.
It clusters the attributes with larger affinity values
together, and the ones with smaller values together).
[8]

b. The final groupings are insensitive to the order in
which items are presented to the algorithm.

c. The AAM is symmetric, and hence allows a pair wise
permutation of rows and columns, which reduces
complexity.[9]

d. The computation time of the algorithm is reasonable.
O(n2), where n is the number of Attributes.

This algorithm takes as input the attribute af finity matrix,
permutes its rows and columns and generates a clustered
affinity matrix (CAM). The permutation is done in such a
way to maximize the following global affinity measure
(AM).Generation of the Clustered Affinity Matrix is done in
three steps:

a. Initialization: - Place and fix one of the columns of
AAM arbitrarily into CAM. [10]

b. Iteration: - Pick each of the remaining n-i columns
(where i is the number of columns already placed
in CAM) and try to place them in the remaining i+1
positions in the CAM matrix. Choose the
placement that makes the greatest contribution to
the global affinity measure described above.
Continue this until no more columns remain to be
placed.[10]

c. Row Ordering: - Once the column ordering is
determined, the placement of the rows should also
be changed so that their relative positions match the
relative positions of the columns. When the CAM
is big, usually more than two clusters are formed
and there are more than one candidate
partitions.[10]

B. Binary vertical partitioning algorithm: - The Bond
Energy Algorithm determines an ordering of attributes,
but it is still left to the subjective judgment of the
designer to decide how to clump the attributes together
to form fragments. The binary vertical partitioning
algorithm uses the clustered affinity matrix to partition
an object into two non-overlapping fragments[9]. The
approach of this algorithm is splitting rather than
grouping with the objective of finding sets of attributes
that are accessed mostly by distinct set of applications.
Assume that point x is fixed along the main diagonal of
the clustered affinity matrix. The point x defines two
blocks: upper (U) and lower (L). Each block defines a
vertical fragment given by the set of attributes in that
block. If At is the set of attributes used by transaction t,
then it is possible to compute the following sets:

T= (t|t is a transaction)
LT = (t|A(t) C L)
UT = (t|A(t) C U)
IT = T - (LT U UT)

T represents the set of all transactions. LT and UT
represent the set of transactions that match the partitioning,

Jaspreet kaur et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,288-291

© 2010, IJARCS All Rights Reserved 290

as they can be entirely processed using attributes in the
lower or upper block, respectively; IT represents the set of
transactions that needs to access both fragments.[9][10]
CT = t є T qt
CL = ∑ t є LT qt
CU = ∑ t є UT qt
CI = ∑ t є IT qt

CT counts the total number of transaction accesses to the
considered object. CL and CU count the total number of
accesses of transactions that need only one fragment; CI
counts the total number of accesses of transactions that need
both fragments. Totally n-1 possible locations of point x
along the diagonal is considered, where n is the size of the
input matrix (ie. the number of attributes). A non-
overlapping partition is obtained by selecting the point x
along the diagonal such that the following objective function
z is maximized: [10][11]

max z = CL*CU-CI2
The partition that corresponds to the maximal value of

the z function is accepted if z is positive and rejected
otherwise. The above objective function comes from an
empirical judgment of what should be considered a “good”
partitioning. The function is increasing in CL and CU and
decreasing in CI. For a given value of CI, it selects CL and
CU in such a way that the product CL* CU is
maximized.[10]

This results in selecting values for CL and CU that are as
nearly equal as possible. Thus the above function z will
produce fragments that are “balanced” with respect to the
transaction load. This algorithm has the disadvantage of not
being able to partition an object by selecting out an
embedded “inner” block.

C. Limitations of the Bond Energy and Binary
Vertical Partitioning Algorithms:

All the Algorithms discussed above use affinity matrix as
input and because the attribute affinity is a measure of an
imaginary bond between a pair of attributes, this measure
does not reflect the closeness or affinity when more than two
attributes are involved.

a) In the BEA the creation of partitions is left to the
subjective evaluation of the designer.[8]

b) There is no common criterion or objective function
to compare and evaluate the results of these vertical
partitioning algorithms.[8]

c) The above algorithms assumes that there will
always be a possibility of an (n-1) partitioning for a
relation R, without ignoring that there could be a
situation where considering the entire relation R as
one fragment could be the optimum solution, i.e.
having an (n-0) partition possibilities.[11]

a. Graph-based vertical partitioning:- A new
algorithm has been developed which is based on a
graphical technique This algorithm starts from the
attribute affinity matrix by considering it as a
complete graph called the “affinity graph” in which
an edge value represents the affinity between the
two attributes, and then forms a linearly connected
spanning tree. By a “linearly connected tree” we
imply a tree that is constructed by including one
edge at a time such that only edges at the “first”
and the “last” node of the tree would be considered
for inclusion. We then form “affinity cycles” in this
spanning tree by including the edges of high

affinity value around the nodes and “growing”
these cycles as large as possible. After the cycles
are formed, partitions are easily generated by
cutting the cycles apart along “cut-edges”. The
major feature of this algorithm is that all fragments
are generated by one iteration in a time of O(n2)
that is more efficient than the previous
approaches.[11]

b. Advantages:- The major advantages of this method
over the previous approaches are:-

a) There is no need for iterative binary partitioning.
The major weakness of iterative binary partitioning
used is that at each step two new problems are
generated increasing the complexity; furthermore,
termination of the algorithm is dependent on the
discriminating power of the objective function.[12]

b) The method requires no complementary algorithms
such as the SHIFT algorithm that shifts the rows
and columns of the affinity matrix.The comp lexity
of this approach is O(n2) as opposed to
O(n2log(n))[12]

i. Disadvantage:- This algorithm produces a fixed no
of partitions and it is difficult to control over
number of partitions to be generated. To overcome
from this problem Exhaustive Enumeration
Algorithm is developed.

d. Exhaustive Enumeration Algorithm:- This
algorithm exhaustively enumerates all possible
combinations of the attributes. Hence we can easily
choose the number of partitions in the partition
scheme. However we are limited by the number of
attributes. We have run this algorithm for attribute
usage matrices with upto ten attributes. This
algorithm is to be modifed to incorporate heuristics
to reduce the search space. Then it is possible to
work with attribute usage matrix with increased
number of attributes.[11]

III. CONCLUSION AND FUTURE WORK

In this paper we conclude the comparison of various
vertical partitioning algorithms to solve the vertical
partitioning problem. we address the problem of n-ary
vertical partitioning problem. The objective function derived
in this paper is being used for developing heuristic
algorithms that satisfy the objective function. we first derive
an objective function that is suited to distributed transaction
processing and solves the problem of data fragmentation,
allocation and replications in relational database. From this,
we conclude that Exahaustive algorithm gives promising
results as compared to other vertical partitioning algorithms.
Further work can be done to derive the objective function
which generalizes and subsumes earlier work on vertical
partitioning in distributed database with non relational
databases. Work can also be done to develop a partitioning
algorithm which can follow the different mapping and load
sharing techniques to have dataload with better performance
using non relational databases.

IV. REFERENCES

[1]. Vatika Sharma, Meenu Dave, “Comparison of SQL and
NoSQL Databases, “International Journal of Advanced

Jaspreet kaur et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,288-291

© 2010, IJARCS All Rights Reserved 291

Research in Computer Science and Software Engineering”,
Volume 2, Issue 8, August 2012.

[2]. Partitioning [online.] Available :
http://en.wikipedia.org/wiki/Partition(database)

[3]. Oracle® Database Vldb And Partitioning Guide [online] :
Available:
http://docs.oracle.com/cd/B28359_01/server.111/b32024/.p
df.

[4]. Building Scalable Databases Pros And Cons Of Various
Database partitioning Schemes[online]
Available:http://www.25hoursaday.com/weblog/2009/01/1
6/BuildingScalableDatabasesProsAndConsOfVariousDatab
aseShardingSchemes.aspx

[5]. Rick Cattell, “Scalable SQL and NoSQL Data Stores”,
Communications of the ACM, December 2011.

[6]. Shahidul islam khan, Dr. A. S. M. Latiful Hoque, “A New
Technique for Database Fragmentation in Distributed
Systems”, International Journal of Computer Applications
Volume 5-No.9, August 2010.

[7]. Ms.P. R. Bhuyar , Dr. A.D.Gawande , Prof.
A.B.Deshmukh, “Horizontal Fragmentation Technique in
distributed Databases”, International Journal of Scientific
and Research Publications, Volume 2, Issue 5, May 2012

[8]. D. W. Cornell and P. S. Yu, "A vertical partitioning
algorithm for relational databases", Proceedings of the
Third International Conference on Data Eng, February 3-5,
pp.30-35, 1987.

[9]. Shamkant Navathe, Stefeno Ceri, Gio Wiederhold, Jinglie
Dou, “Vertical Partitioning Algorithms for Database
Design”, ACM Transactions on Database Systems, Vol. 9,
No. 4, December 1989.

[10]. Jeyakumar Muthuraj, “ A Formal Approach To The
Vertical Partitioning Problem In Distributed Database
Design” Proc. of PDIS-2,San Diego, Jan 1993.

[11]. S. Chakravarthy, J. Muthuraj, R. Varadarajan, and S. B.
Navathe, “An objective function for vertically partitioning
relations in distributed databases and its analysis”,
Distributed and Parallel Databases, Springer, Vol. 2, No. 2,
pp. 183–207, 1994.

[12]. S. Navathe, and M. Ra., “Vertical Partitioning for Database
Design: A Graphical Algorithm”, Proceedings of the ACM
SIGMOD international conference on Management of data,
Volume 18 ,Issue 2, pp. 440-450, june 2000.

[13]. Adrian Runceanu, Marian Popescu, “An algorithm for
replication in distributed databases”, In proceeding of
International Joint Conferences on Computer, Information
and Systems Sciences, and Engineering, Volume 12,2011.

http://en.wikipedia.org/wiki/Partition(database)�
http://docs.oracle.com/cd/B28359_01/server.111/b32024/.pdf.�
http://docs.oracle.com/cd/B28359_01/server.111/b32024/.pdf.�
http://www.25hoursaday.com/weblog/2009/01/16/BuildingScalableDatabasesProsAndConsOfVariousDatabaseShardingSchemes.aspx�
http://www.25hoursaday.com/weblog/2009/01/16/BuildingScalableDatabasesProsAndConsOfVariousDatabaseShardingSchemes.aspx�
http://www.25hoursaday.com/weblog/2009/01/16/BuildingScalableDatabasesProsAndConsOfVariousDatabaseShardingSchemes.aspx�
http://www.25hoursaday.com/weblog/2009/01/16/BuildingScalableDatabasesProsAndConsOfVariousDatabaseShardingSchemes.aspx�
http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1145/645472.653385&rfr_id=trans/ts/1993/08/tts1993080804.htm�
http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1145/645472.653385&rfr_id=trans/ts/1993/08/tts1993080804.htm�
http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1145/645472.653385&rfr_id=trans/ts/1993/08/tts1993080804.htm�
http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1145/645472.653385&rfr_id=trans/ts/1993/08/tts1993080804.htm�

