
Volume 4, No. 8, May-June 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved
 10

ISSN No. 0976-5697

Agent Vs Object with an in-depth insight to Multi-Agent Systems

Adnan Ghazi Abuarafah
Faculty of Computer of and IS,

Umm Al- Qura University, Makkah, SA
agabuarafah@uqu.edu.sa

Hussam Aleem Mohammed
Faculty of Computer of and IS,

Umm Al- Qura University, Makkah, SA
mohdhussamaleem@gmail.com

Mohamed Osama Khozium*

Department of Engineering and applied science - computers, MCC-UQU.
Umm Al-Qura University, Makkah, Saudi Arabia

osama@khozium.com

Abstract: In this paper we illustrate the meaning, definitions and importance of intelligent software agent by contrasting agents with objects.
Agents are indeed considered to be an evolutionary step forward from objects. The paper is dedicated to visualize the importance and awareness
of the agents and multi-agents and will give suitable examples on them.
There are many interesting works showing a methodological approach for Multi-Agent system development. These approaches must be
compared to identify the best possible Multi-Agent methodology. Furthermore, this paper highlights the multi agents structure, methodologies
and common applications and provide surveys that allow researchers/developers to determine the directions in which agent-oriented
methodologies are best suited to achieve goals of a particular project or system. Agents provide software designers and developers with a way of
structuring applications around autonomous, communicative components and offer a new and often more appropriate route to the development
of complex computational systems, especially in open and dynamic environments.

Keywords: Multi-agent methodologies; Agent environment; Intelligent agent; Prometheus; agent Percepts; agent actions.

I. INTRODUCTION

As we all know very well that software has ever more
become part of our daily life and as a result, more complex
problems are being faced by the traditional conceptions of
software.

In order to overcome these complex problems, the
requirements engineering community suggested the need to
go beyond such conceptions. Many researches worked on
this issue and are pointing to the need to deal with wider
aspects in order to be able to understand and model
requirements for these systems. [1, 2, 3].

By moving a step ahead from objects towards agents, the
above mentioned complex problems can be solved. In order
to support this statement, this paper focus mainly on the
usage of agents instead of just working with objects and
there is a comparison of agent and objects.

A. Definition of Agent:
An agent is nothing but a computer system which is

situated in some environment, and that is capable of

autonomous action in this environment in order to meet its
design objectives. Wooldridge distinguishes between an
agent and an intelligent agent, which is further required to
be reactive, proactive and social. Agents comprises mental
attitudes such as intentions, beliefs and goals. [4]

Agent-based systems offer enhanced functionalities,
greater flexibility, and better security, reliability and
robustness. The intensifying agent based technology exhibits
autonomy and sociality and is proactive. This made the
applications shift from the object oriented technology to
agent based systems. [5]

Agents are autonomous entities that can interact with
their environments. Objects and Agents are distinct enough
to treat them differently. When a system is to be designed, it
can be chosen as a thought-out mixture of both approaches.
In some sense, the burden of getting along with other
technologies is a problem for both the agent and object
camps. For example, transport policies, directory elements,
communication factories, transport references. An agent
interacting with an environment is shown in the Figure-1
below.

Figure 1 : An agent interacting with an environment

Mohamed Osama Khozium et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,10-17

© 2010, IJARCS All Rights Reserved

Some Facts about Agent-based Computing
a. An agent is a computer system that is capable of

flexible autonomous action in dynamic, unpredictable,
typically multi-agent domains.

b. Intelligent agents are helping astronomers detect some
of the most dramatic events in the universe, such as
massive supernova explosions.

c. Multi-agent systems offer strong models for
representing complex and dynamic real-world
environments. For example, simulation of economies,
societies and biological.

d. Environments are typical application areas.
e. Agents provide software designers and developers with

a way of structuring applications around autonomous,
communicative components. They offer a new and
often more appropriate route to the development of
complex computational systems, especially in open and
dynamic environments.

f. Working with Rolls Royce, Lost Wax has developed
Aerogility, a multi-agent system to help business
managers better understand the complexities of the
aerospace aftermarket. [6]

B. Definition of Object:
Objects are defined as collections of operations that

share a state and determine the messages (calls) to which an
object can respond. [7]

"Object-orientation" in simulation refers also to the
execution of models, i.e., whether the experimentation with
the model happens as message passing between objects.
Some object-oriented simulation systems are object-oriented
with respect to both dimensions, some, particularly those,
that allow also for continuous simulation, support an object-
oriented model design but forego an object-oriented
execution of the model. [8]

Objects represent passive elements, whereas agents
represents active elements in the software system. Agents
and objects perform and coordinate their actions in dynamic
environments to accomplish the organizations’ goals.

Object can also be reactive, and have an implicit goal as
that of agents. However, they are not proactive as they
cannot have multiple goals and of these goals being explicit
and persistent. More of such important advantages and
usage of agents over objects will be discussed in this paper
with some experiments.

This paper is divided into six sections. The first section
is this introduction. The second section discusses the related
work. The third section is about the environment types and
examples. The fourth section gives the differences between
agent vs. object. The fifth section is about the structure and
methodologies of the Multi-agent system and its
comparison. The last section concludes the work and
discusses the future of the research.

II. RELATED WORK

James Odell discusses some of the differences and
similarities between agents and objects and lets you decide
which viewpoint you want to choose. He mentioned that the
agent-based way of thinking brings a useful and important
perspective for system development, which is different
from—while similar to—the object-oriented way. [10]

However, he brings out only the philosophical
differences. Uhrmacher illustrates both the technologies -
agents and objects. He gives importance to both the
technologies and focused on the usage of both of them [7]
However, from this paper, you will get a comparison of
agent vs. objects with details on Multi-agent system and will
give the reasons of using agent-oriented software design for
modeling and simulation that have spawned a plethora of
research activities and implementations.

Luiz Marcio et al. gave a practical approach that uses a
well defined and complex problem producing specifications
using agent/goal orientation and object orientation could
guide us to understand better the strengths and weaknesses
of each approach. [5]

Silva Viviane, et al 2003 proposed taming agents and
objects in software engineering and presented a conceptual
framework that provides a conceptual setting for
engineering large-scale MASs based on agent and object
abstractions. The identified set of abstractions is organized
in terms of a unifying framework, providing software
engineers with a deeper understanding of the fundamental
concepts underpinning agent and object notions and their
relationships. Objects are viewed as abstractions to represent
passive elements, while agents provide a means of
representing active elements in the software system. In
addition, a set of additional abstractions is provided to
model situations where organizations of cooperating agents
and objects perform and coordinate their actions in dynamic
environments to accomplish the organizations’ goals. [11]

Wooldridge proposed GAIA in which the foundation of
analysis is based on a Object-Oriented design method called
Fusion, from which it borrows terminology and notations.
Their developing process consists of analysis, architecture
design and detailed design. Later Tooli and Asaadi proposed
GAIA methodology which is used for the analysis and
design of agent-based systems. They used an attribute-based
evaluation framework which addresses four major areas of
an agent-oriented methodology: concepts, modeling
language, pragmatics and process. [9] Although GAIA has a
clear semantic and understandable modeling language,
GAIA doesn't support several features which include
traceability and consistency checking There should be some
improvement in GAIA like integration of these features into
a supporting tool. Although GAIA provides architectural
design and requirements analysis, it should provide software
quality assurance.

Moreover, there will be detailed review of the structure
and methodology of agent-based software technology and
Multi-agent systems that will help in getting a clear
viewpoint on why agents can be used more widely than
compared to objects and finally we will propose the best
suitable Multi-agent methodology that can be selected by the
Researchers/Developers.

III. ENVIRONMENT TYPES AND EXAMPLES

An intelligent software agent firstly perceives its
environment via sensors, then make use of its actuators to
accomplish the goals. The examples mentioned in the below
table-1 will give a clear idea about why to go a step forward
from objects to agents in order to achieve the intricate goals.

Mohamed Osama Khozium et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,10-17

© 2010, IJARCS All Rights Reserved

A. Examples of Environments & Agents:
Table 1 : Example of Agents [12]

AGENT Environment Goals Percepts Actions

Intelligent
House

• occupants enter and
leave house

• occupants enter and
leave rooms

• daily variation in outside
light and temperature

• occupants warm,
• room lights are on when

room is occupied
• house energy efficient

signals from
• temperature sensor
• movement sensor
• clock
• sound sensor

• room heaters
on/off

• lights on/off

Automatic Car • streets
• other vehicles
• pedestrians
• traffic signals / lights /

signs

• safe
• fast
• legal trip

• camera
• GPS signals
• speedometer
• sonar

• steer
• accelerate
• brake.

Mail Sorting
Robot

conveyor belt of letters route letter into correct bin array of pixel
intensities

route letter into bin

Medical
diagnosis
system

Patient, hospital Healthy patient,
minimize costs

Symptoms,
findings, patient’s

answers

Questions, tests,
treatments

Part-picking
robot

Conveyor belt
with parts

Place parts in
correct bins

Pixels of varying
intensity

Pick up parts and
sort into bins

Satellite image
analysis system

Images from
orbiting satellite

Correct
categorization

Pixels of varying
intensity, color

Print a
categorization of

scene
Refinery
controller

Refinery Maximize purity,
yield, safety

Temperature,
pressure readings

Open, close
valves; adjust
temperature

Interactive
English

tutor

Set of students Maximize
student’s score on

test

Typed words Print exercises,
suggestions,
corrections

B. Types of environments:
There are several flavors of Environments. [12] The

principal distinctions to be made are as follows:

a. Accessible vs. inaccessible:
The environment is said to be accessible if the sensory

apparatus of an agent gives it an access to the complete state
of environment. The sensors detects all aspects that are
relevant to the choices of action. The agent may not keep
any internal state to keep track of the world and so
accessible environment is the convenient one.

b. Deterministic vs. nondeterministic:
The environment is said to be deterministic if the next

state of the environment and the actions selected by the
agents are completely determined There are no issues of
uncertainty in an accessible, deterministic environment for
an agent. However, if the environment is inaccessible, then
it may appear to be nondeterministic and this is factual if the
environment is complex, making it hard to keep track of all
the inaccessible aspects. Hence from the agent point of
view, it is better to think of an environment as deterministic
or nondeterministic.

c. Episodic vs. non-episodic:
An episodic environment is the one in which the

experience of the agent is divided into episodes. Each of the
divided episode consists of the agent perceiving and then
acting. The agent's actions quality depends on only the
episode as the subsequent episodes do not depend on what
actions occur in previous episodes. The agent does not need
to think ahead and so these environments are much simpler.

d. Static vs. Dynamic:
An environment is said to be dynamic for an agent if it

can change while an agent is deliberating, otherwise it si
said to be static. The environment is said to be semi dynamic
if it does not change with the passage of time but the
performance score of an agent does.

e. Discrete vs. Continuous:
An environment is said to be discrete there is a limit in

the number of percepts and actions that are distinct and
clearly defined. Chess can be considered to be discrete as
there are fixed number of moves on each turn. Taxi driving
can be considered to be continuous as the location and speed
of the taxi and other vehicles sweep through a range of
continuous values.

So the most challenging environments are inaccessible,
nondeterministic, non-episodic, dynamic, and continuous.

IV. AGENT vs. OBJECT

A software Agent comprises two basic properties -
autonomous and situated in an environment. The first
property of the Agents - being autonomous means that
agents are independent and make their own decisions. This
is one of the properties that distinguishes agents from
objects.

The second property of Agent - being situatedness does
not constrain the notion of an agent very much since
virtually all software can be considered to be situated in an
environment.

The types of environments are the one that make agents
differ from object. Unlike objects, agents are used in an
environment which is challenging like dynamic,
unpredictable and unreliable.

Mohamed Osama Khozium et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,10-17

© 2010, IJARCS All Rights Reserved

a. Dynamic Environments: Environments which change
rapidly are the dynamic environments.

b. Unpredictable Environments: As the name reflects,
these environments are unpredictable as it is not
possible to predict the future states of the environment.
This is because it is not possible for an agent to have
perfect and complete information about their
environment as the environment is being modified in
ways beyond the agent’s knowledge and influence.

c. Unreliable Environments: The environments are
unreliable because the actions that can be performed by
an agent may fail for reasons which are beyond an
agent’s control. For example, a robot attempting to lift
an item may fail for the item being too heavy or for
other reasons.

Objects cannot have multiple goals and so they are not
proactive. So the proactiveness is another property that
make agent different from objects.

Agents must be robust to recover from the failures due to
the challenging environments. In order to achieve this
robustness, there should be flexibility. And these two
properties of agents make it differ from objects.

From the above comparison of agents and objects, we
can conclude that an Intelligent Agent is a software that
comprises the following properties

a) Autonomous – independent, not controlled
externally

b) Situated – exists in an environment
c) Proactive – persistently pursues goals
d) Reactive – responds (in a timely manner!) to

changes in its environment
e) Robust – recovers from failure
f) Social – interacts with other agents
g) Flexible – has multiple ways of achieving goals

In addition to the above mentioned properties, there are
other properties of agents which we regard as less central
and are important only for certain agent applications.

In order to achieve goals, we may need the agents to be
rational. The property of being rational is that an agent
should be smart and do not perform ‘dumb’ things such as
simultaneously committing to two courses of action that
may result in a conflict. For example, spending money for a
holiday and at the same time, spending money on the car. A
detailed analysis of what is meant by ‘rational’ can be found
in the work of Bratman. [13] This analysis forms the basis of
the Belief-Desire-Intention model for software agents. [14]

One definition of agents (strong agency) takes these
various properties, and are viewed as having mental
attitudes such as goals, beliefs and intentions.

V. MULTI-AGENTS

Multi-agent technology is one of the main research fields
of distributed artificial intelligence. Agents are used to
design and implement complex distributed applications as it
have certain properties such as mobility, learning, and
autonomy. A network of such cooperating agents each
covering a well-defined and restricted part of the solution is
a multi-agent system. The task of the multi-agent system is
to control and monitor the agents in spite of agents being
autonomous. [15]

A. Definition of Multi-agent System:
Multi-agent System (MAS) became a significant

research field of distributed artificial intelligence. An agent
society of multi-agent is MAS. MAS is also a kind of
distributed independent system. Through interactive agents,
MAS implement its expressiveness. MAS focus on the
research on how to coordinate multi-agent’s goal,
knowledge, program and strategy with the goal of solving
problem or taking action together [16]. MAS has huge
market with very wide field of application. [17]
Multi-agent systems offer strong models for representing
real-world environments with an appropriate degree of
complexity and dynamism. For example, simulation of
economies, societies and biological environments are typical
application areas. The use of agent systems to simulate real-
world domains may provide answers to complex physical or
social problems that would be otherwise unobtainable, as in
the modeling of the impact of climate change on biological
populations, or modeling the impact of public policy options
on social or economic behavior. Agent-based simulation
spans: social structures and institutions to develop plausible
explanations of observed phenomena, to help in the design
of organizational structures, and to inform policy or
managerial decisions; physical systems, including intelligent
buildings, traffic systems and biological populations; and
software systems of all types, currently including
ecommerce and information agency. [6]
In multi-agent systems, an additional layer of software
components is expressed as objects and collections of
objects which provides infrastructure that embodies the
support for agents composed of object parts

B. Application Research on Multi-agent:
Based on the relevant literatures at home and abroad,

several main application fields of multi-agent are listed
below. [17]

a. Industry:
One of the activist and the earliest fields of application

of Multi-agent is the application in industry. Multi-agent
was firstly used in process management.

b. Transportation:
It is suitable to use multi-agent technology in

transportation because of the distributed characteristic of the
transportation control system.

c. Information Processing:
The demand of information management increased with

the increase of bulk information. Information overload came
into view due to the Lack of effective tools for information
management. The Information filter, Information
management, information search and collection was the
approach to deal with information overload. Information
agent is used in information management to respond to the
user requests. [18]

d. Electronic Commerce:
The development of Internet and electronic commerce

emerged in the later of 20th century. The Electronic
commerce allowed online shopping and selling products by
using credit cards.

Mohamed Osama Khozium et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,10-17

© 2010, IJARCS All Rights Reserved

e. Network:
In case of network management, the system based-on

agent contribute to control network and complex system,
failure prediction, load balancing, information synthesis and
malfunction analysis.

f. Software Development:
Software agent develop multi-agent system by making

use of computer Distributed Intelligent Forecasting,

g. Decision-making and Calculating:
The system forecasting can be resolved using the

characteristic of multi-agent.

h. Social Simulation:
Multi-agent technology can be looked as experimental

tools of sociology.

i. Medicine:
The demands of Medicine application increases with the

development of computer science technology increases
steadily and these medical applications based on agent is
inevitable.

j. Entertainment:
Agent can be utilized into interactive theater, computer

game, and other modes of entertainment. [17]

C. Multi-agent methodologies and its
comparison/selection:

This section will focus on various methodologies of
Multi-agent system. We will then propose
comparison/directions to the Researchers/Developers in
which agent-oriented methodologies are best suited to
achieve goals of a particular project or system.

a. Prometheus:
Prometheus is a methodology which defines a detailed

process to specify, design and implement intelligent agents
systems. The basic idea behind Prometheus is that it can be
easily used by specialists as well as common users.
Prometheus is focused on systems that use belief–desire–
intention (BDI) agents [23]. The Prometheus is divided into
three phases: System Specification, Architectural Design
and Detailed Design where System specification identifies
the basic system roles through the definition of perceptions,
actions and shared data objects. The Architectural Design
defines the agents and their interactions in the system. The
Detailed design gives detail information about the agent
internals.

The Prometheus modeling generated 10 different
diagram types. Stakeholders Diagram, Scenarios Diagram,
Goal Overview Diagram and Roles Diagram are generated
by System Specification. The Data Coupling Diagram,
Agent-Role Coupling Diagram, Agent Acquaintance and
System Overview Diagram were generated in the
Architectural Design. Finally, the Agent Overview
Diagrams and Capability Overview Diagrams were
generated in the Detailed Design. [23]

b. TROPOS:
Tropos is a software development methodology focus on

the requirements aspects allowing a better understanding of
the environment involved in the system operation. It uses the

framework [24] that describes the actors, goals and
dependencies among the actors.

Tropos is divided into 5 major phases namely Early
Requirements, Late Requirements, Architectural Design,
Detailed Design and Implementation. Early Requirements
allows understanding of a problem by studying an
organizational setting and the output is modeled by
Strategic Dependency and Rationale Dependency. Late
Requirements also generates artifacts, but describing the
system-to-be within its operational environment, along with
relevant functions and qualities. Architectural Design is
where the system’s global architecture is defined in terms of
subsystems, interconnected through data, control and other
dependencies. Architectural design gives the choice of the
organizational architectural style, the architecture modeling
and the application of social patterns. Detailed Design
gives the behavior of each architectural component is
defined in further detail and were generated an UML
diagram with stereotypes and an AUML sequence diagram
representing the interaction between agents. The
Implementation phase was not worked in the
experimentation. Tropos modeling generated 8 artifacts in
the experimentation.

c. MaSE:
MaSE stands for Multi-agent System Engineering

proposed by Deloach et al.(2001). MaSE is an object-
oriented methodology that supports analysis and design
phases using agent-orientated techniques.

MaSE methodology provides developers guidance from
requirements to implementation. [19] . MaSE can also be
considered a powerful methodology in terms of cooperative
agents concepts, definition of autonomy, proactively and
autonomy reason and the agent concepts are centered in the
Roles Diagram and in Goal orientation. [22]

The development process consists of two main phases:
analysis and design where in each step related models are
created. A series of steps are provided to model the system
in each phase. Models in one step produce outputs that
become inputs to the next step, which supports traceability
of the models across all of the steps.
a) The analysis phase consists of three steps: capturing

goals, applying use cases, and refining roles.
Capturing goals identifies High-level goals from

requirements analysis. These goals are then decomposed
into sub goals and collected into a tree-like structure.
Applying use cases generates use-cases and their
corresponding sequence diagram. Refining roles involves
role refinement which main task is to map goals into roles
where every goal in the system needs a delegated role.
b) The design phase consists of four steps: creating

Agent classes, constructing conversations, assembling
Agent classes, and system design.

Agent classes creates Agent classes and their interactive
behavior and Agent class is recognized. Constructing a
conversation helps designers to construct conversation
models used by Agent classes. The assembling Agent class
step creates Agent class internals. In the System design,
Agent classes are instantiated into actual Agents.

d. Masup
MASUP is a Rational Unified Process (RUP) extension

[25] that focuses on multi-agent systems development. The

Mohamed Osama Khozium et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,10-17

© 2010, IJARCS All Rights Reserved

methodology aim is to systematically identify the
applicability of an agent solution during the modeling
phases. Analysis and Design disciplines are required by
MASUP. The agent solution identification occurs on the
analysis and design disciplines through a heuristic over
activity diagrams. After the identification that an agent
solution is appropriate for the problem at hand, MASUP
proposes different diagrams to capture agent characteristics.
The methodology is fully compatible with RUP and the non-
agent part of the system can be modeled using the traditional
RUP techniques.

D. Comparative Analysis
All discussed methodologies provide a certain degree of

maturity in terms of process definition. Upon careful review,
Prometheus and MASUP are considered to be the best
processes structure through the precise definition of roles,
activities and artifacts. Tropos and MaSE do not exhibit the
same firmness for presenting the process structure. For a
better use of a software development methodology, we
conclude that a process should be clearly defined. [23]

None of the methodology support adaptation,
composition, learning or mobility representation. The future
agent-oriented methodologies must address an open
representation issue in this matter. However, it does not
happen with the organization structure modeling. All the
methodologies were concerned in a certain level with agent
relationships representation. Only two methodologies,
MASUP and Tropos were considered interesting in this
factor since they provide mechanisms to represent agents’
hierarchy.

In terms of models traceability Prometheus seems to be
the better methodology. The other three methodologies do
not have a specific traceability discipline. However, in
software development, traceability is still an open issue.
Since multi-agent systems require more aspects to be
modeled, traceability techniques should be largely enhanced
for those systems. There should be a start of Traceability
right in the requirements capture. MASUP and Tropos are
most suitable in this matter as these methodologies have a
well-defined requirements phase. The other approaches
assume that the requirements capture should be done outside
their scope.

An agent-oriented approach does not solve all the
problems. Prometheus, Tropos and MaSE presume that an
agent solution will be applied from the beginning. MASUP
has a heuristic to guide role identification throughout the
methodology. Any methodology does not cover the
aggregation of roles in agents. Guidelines or clear
techniques must be established by the new methodologies to
identify roles and agents during the modeling phases.

One of the most significant characteristic of multi-agent
systems is Communication and interaction. All the discussed
methodologies employ special modeling to signify
interaction among agents. On the other hand, most
methodologies neglect agent internal representation. Agent
internals are captured only by Prometheus. There should be
proposal of new approaches that shows how the internal
agent elements get influenced by the external behavior
expected by software agents. Also, the new approach should
be able to show which elements are predictable to be found
on a software agent.

In terms of implementation platform, methodology
should be independent. Implementation independence is
maintained by all the discussed methodologies. Prometheus
has some studies to translate its representation to the Jack
platform. Though the better choice for agent-oriented
methodologies is implementation independence, it is
interesting the existence of case studies that integrates a
methodology to a well-known implementation
infrastructure.

Agents should interact in the organization in a way that
their common goal can be achieved. Organization process
workflow modeling is important to map the agents own
goals to the society common goal through a workflow that
coordinate agents actions. This factor is outside the scope of
all the methodologies examined. This comprises an
important improvement opportunity for new agent-oriented
methodologies. [23]

There are mechanisms to signify the messages
exchanged by agents in all methodologies. The only
methodology that uses a proprietary format instead of
message representation standards is Prometheus. The
designers can reuse previous work results to model the
messages in agent communication if standards are used in
message representation [23]

VI. CONCLUSION

This paper has an argument on the importance of agent-
oriented computing to be a suitable software engineering
model when compared with objects for the design, analysis,
and development of many modern software systems. This
paper provides a realistic review of agent-oriented
mechanisms which support requirements of engineering in
today's complex application environments. The limitations
of the object theories and their abstractions are not powerful
enough to examine the new issues in achieving goals. This
can be resolved by the companies and researchers which are
now investigating how agents can contribute to the
mastering of the complexity of modern large-scale systems.
Agents can become more widely available and useful if
migration strategies are provided sooner. Software
developers has composed agents from objects thereby
building the infrastructure for agent-based systems which
act as an support system used for OO (object oriented)
software system. For example, agents can be reasonably
expressed as objects. These might include agent names,
agent communication handles, agent communication
language components (including encodings, ontology, and
vocabulary elements), and conversation policies.

We then moved towards Multi-agent technology that has
been used in various aspects in the field of society with the
development of network technology. The ability of solving
complex problem of the system can be improved with the
application of multi-agent technology. Moreover, our
surveys allow Researchers/Developers to determine the
directions in which agent-oriented methodologies are best
suited to achieve goals of a particular project or system. To
conclude the improvement opportunities from the
comparison done in section-5.4, we propose that an agent-
oriented methodology should:
a. Use modeling standards;
b. Be clearly defined with good documentation and case

studies;

Mohamed Osama Khozium et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,10-17

© 2010, IJARCS All Rights Reserved

c. Define a traceability process among the artifacts
produced;

d. Establish clear techniques or guidelines to identify roles
and agents during the modeling phases;

e. Model organization structure with relationship types
other than message exchanging and authority;

f. Capture agency characteristics such as adaptation,
learning, mobility and composition;

g. Organization workflow definition.
h. Agent internals modeling.

With the developments in the agent-oriented
methodologies, research will keep determining the
directions in which agent-oriented methodologies are best
suited to achieve goals of a particular project or system.
Hence, there are various future works that can be done in
this area. Moreover for the future work, we may integrate
one innovative example/idea into this intelligent agent
system.

VII. REFERENCES

[1]. Paolo Bresciani, Fausto Giunchiglia, John Mylopoulos and
Perini Anna, 2004. "TROPOS: An Agent-Oriented
Software Development Methodology," Journal of
Autonomous Agents and Multi-Agent Systems, 8, 203–
236.

[2]. Van Lamsweerde, 2001. "Goal-Oriented Requirements
Engineering: A Guided Tour," Proc. of 5th IEEE Int.
Symp. on Requirements Engineering.

[3]. Annie Antón, 1996. "Goal-Based Requirements Analysis,"
Second IEEE International Conference on Requirements
Engineering (ICRE '96), Colorado Springs, Colorado, pp.
136-144.

[4]. Jennings Nicholas R, Michael J. Wooldridge, 1998.
"Applications of intelligent agents". In Agent Technology:
Foundations, Applications, and Markets (eds. Jennings NR
and Wooldridge MJ), Chapter 1, pp. 3-28. Springer,

[5]. Cysneiros Luiz Marcio, Vera Werneck, Juliana Amaral and
Eric Yu. 2005. "Agent/goal Orientation versus Object
Orientation for Requirements Engineering: A Practical
Evaluation Using an Exemplar." Proc. of VIII Workshop in
Requirements Engineering.

[6]. Luck Michael. May 2006. "Agent-based Computing"
GEOconnexion International Magazine.

[7]. Uhrmacher Adelinde, Tyschler P, and Tyschler D. 1997.
"Concepts of object-and agent-oriented simulation."
Transactions of the Society for Computer Simulation 14.2:
59-67.

[8]. Praehofer H., Auernig F., Reisinger G., 1994. "STIMS -
Modeling and Simulation Environment". Technical Report,
STIMS-94-2, Institute of Systems Science, Johannes
Kepler University Linz, Austria.

[9]. Tooli Amin Farahbakhsh, Asadi Javad. 2011. " Evaluating
GAIAMethodology in Agent-Oriented Software
Engineering". 5thSASTech 2011, Khavaran Higher-
education Institute, Mashhad, Iran. May 12-14.

[10]. Odell James, 2002: "Journal of Object Technology",
Published by ETH Zurich, Chair of Software Engineering

©JOT, vol. 1, no. 1, May-June 2002. Online at
http://www.jot.fm

[11]. Silva, Viviane, 2003. "Taming agents and objects in
software engineering." Software engineering for large-scale
multi-agent systems : 103-136.

[12]. Russell Stuart and Norvig Peter, 1995. "Artificial
Intelligence: A Modern Approach by, Prentice-Hall", Inc.
1995

[13]. Bratman 1987. "ME Intentions, Plans, and Practical
Reason". Harvard University Press, Cambridge, MA

[14]. Rao AS and Georgeff MP. 1992. "An abstract architecture
for rational agents". In Proceedings of the 3rd International
Conference on Principles of Knowledge Representation
and Reasoning, Cambridge.

[15]. Abeck Sebastian, Koppel A, Seitz J, 1998. "A management
architecture for multi-agent systems," Systems
Management, 1998. Proceedings of the IEEE Third
International Workshop on , vol., no., pp.133-138, 22-24
Apr 1998

[16]. Dong Hong, Chun Yi. 2000. Research on Mobile Agent
Technology. Computer Science, 2000, 27(4):35-38.

[17]. Li Suhong, Chen Liwen, Li Guihong, 2009 "Overview of
Application Research on Multi-Agent," Management and
Service Science, 2009. MASS '09. International
Conference on , vol., no., pp.1-4, 20-22 Sept.

[18]. Papazoglou M, Laufman P, Sellis K. 1992. "An
organizational framework for cooperating intelligent
information systems". Journal of Intelligent and
Cooperative Information Systems, 1(1): 169-202.

[19]. Deloach Scott, Wood Mark, 2001 “Developing Multi-agent
Systems with agent Tool”, in Intelligent Agents VII.
Agent Theories Architectures and Languages, 7th
International Workshop, Boston, USA, July2000, published
in LNCS, Vol. 1986, Springer Verlag, Berlin.

[20]. Bernon C., Camps V., Gleizes M. P. and Pi scard G. 2003.
ADELFE: A Methodology for Adaptive Multi-agent
Systems Engineering; In: Lecture Notes in Computer
Science Volume 2577, Springer Berlin He idelberg, ISSN:
0302-9743, pp. 156-169.

[21]. Henderson-Sellers, Brian & Giorgini, Paolo (ed). 2005.
Agent-oriented Methodologies 1ed: Idea Group Inc,
London, UK, ISBN 1-59140-581-5, p412.

[22]. Vera Maria B. Werneck, Rosa Maria E. Moreira Costa and
Luiz Marcio Cysneiros, 2011. Modelling Multi-Agent
System using Different Methodologies Multi-Agent
Systems - Modeling, Interactions, Simulations and Case
Studies, Dr. Faisal Alkhateeb (Ed.), ISBN: 978-953-307-
176-3, InTech, DOI: 10.5772/14792. Link.

[23]. Danilo Rosa dos Santos, Marcelo Blois Ribeiro, Ricardo
Melo Bastos. 2012 "A Comparative Study of Multi-Agent
Systems Development Methodologies". Caixa Postal
90.619-900 – Porto Alegre – RS – Brazil.

[24]. Yu, E. (1995). “Modelling Strategic Relationships for
Business Process Reengineering”. Ph.D. thesis. Dept. of
Computer Science, University of Toronto.

[25]. Bastos, R. M., Ribeiro, M. B. (2004). “Modeling Agent-
Oriented Information Systems for Business Processes”. In:

Mohamed Osama Khozium et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,10-17

© 2010, IJARCS All Rights Reserved

Third International Workshop on Software Engineering for
Large-Scale Multi-Agent Systems, Edinburgh, Scotland.

26th International Conference on Software Engineering –
Workshop. United Kingdom: The IEE. p. 90-97.

