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Abstract: objective. The objective of the paper is the web effort prediction how effectively the web application project will be developed and 

what are all the defects, quality control also developed in the web application projects by using the COCOMO and software effort techniques are 

also been involved. In the project how effectively those projects will be developed. The approach allows us to incorporate causal process factors 

as well as combine qualitative and quantitative measures, hence overcoming some of the well-known limitations of traditional software metrics 

methods. What are all the effort prediction is applied and what are all the defects present in that by using the Bayesian network (BN) model and 

defect prediction using the “McCabe’s versus Halstead versus lines of code counts” for generating defect predictors. By suing this method can 

easily find the defect prediction in which modules the most errors are occurring. We show here that such debates are irrelevant since how the 

attributes are used to build predictors is much more important than which particular attributes are used. Also, contrary to prior pessimism, we 

show that such defect predictors are demonstrably useful. 

I. INTRODUCTION 

In the [39] Web effort project is the most important one 

where to check the effort Estimation, the process by which 

effort is most predictable one and used to determine Costs 

and resource should be allocated, enabling projects to be 

delivered on time and within budget. Effort estimation is a 

very tough to determine in web application project it should 

be more comparatively work with each domain. Within the 

context of Web effort estimation, numerous studies 

investigated the use of effort prediction techniques. 

However, to date, only Mendes [2], [3], [4] has investigated 

the inclusion of uncertainty, inherent to effort estimation, 

into a model for Web effort estimation. A BN is a model 

Which supports reasoning with uncertainty due to the way in 

which it incorporates existing complex domain knowledge 

[1], [7]? Herein, knowledge is represented using two parts. 

The first, which is the qualitative part, represents the 

structure of aBNas depicted by a directed acyclic graph 

(digraph; see Fig. 1). 

 

 

 

The digraph’s nodes represent the relevant variables 

(factors) in the domain being modeled, which can be of 

different types (e.g., observable or latent, categorical). The 

digraph’s arcs represent the causal relationships between 

variables, where relationships are quantified probabilistic 

cally [1], [6], [8]. The second, which is the quantitative part, 

associates a node probability table (NPT) to each node, its 

probability distribution. A parent node’s NPT describes the 

relative probability of each state (value); a child node’s NPT 

describes the relative probability of each state conditional on 

every combination of states of its parents (e.g., the relative 

probability of total effort (TE) being “Low” conditional on 

Size (new Web pages; SNWP) being “Low” is 0.8). Each 

column in an NPT represents a conditional probability 

distribution and, therefore, its values sum up to 1 [1]. Once 

the BN is valued in each module automatically in all other 

modules the values will be generated automatically. In this 

paper where the BN method has been used for web effort 

estimation and we having the opportunity to gather data on 

the industrial web application projects in that newly created 

dp (web effort and defect prediction) database in that data to 

create the BNs presented herein. The project data 

characterize Web projects using size measures and cost 

drivers targeted at early effort estimation. Since we had a 

data set of real industrial Web projects, we were also able to 

compare the accuracy of the Web effort BNs to that using 

Manual Stepwise Regression (MSWR) [2].   

A. P1used data in the WDP database. 

B. P2 used data in another Web projects as Data. 

P1 must be used in a single BN tool, Hug in, for 

structure and parameter learning, p2 used two tools Hug in 

and power soft. S1 used the entire WDP database to elicit 
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the initial BN causal graph S1 in effect used a hybrid BN 

model, where the causal graph was expert driven and its 

probabilities data driven. [a1]Their BN model was validated. 

Then the next will be the checking what are all the defects 

must be presenting in the web application projects. In this 

defect prediction mostly the cost is very cheap and 

effectively can use this method by using the Bayesian 

method is that minor changes in the data(such as a slightly 

different sample used to learn a predictor) can make 

different attributes appear most useful for defect prediction. 

When we using the McCabe’s complexity attribute, just 

because of small variations to the data. [9] Where the 

Halstead method used for the determining the defects in the 

web application projects using these two methods McCabe’s 

and Halstead. Whether the Web application project will give 

better solution or not, what are all defects must be presented 

in that, what are all should be remove from that one, which 

area should be modified and data’s occurring there should 

be valuable one or not . Those things should be evaluated in 

this paper. 

II. RELATED WORK 

There have been numerous attempts to model effort 

estimation for Web projects, but, except for S1, none have 

used a probabilistic model beyond the use of a single 

probability distribution. TSE.2008.64, presents a summary 

of previous studies. Whenever two or more studies 

compared different effort estimation techniques using the 

same data set, we only included the study that used the 

greatest number of effort estimation techniques. For the 

defect predictions McCabe [10] and Halstead [9]. McCabe 

and Halstead are “module”-based metrics, where a module 

is the smallest unit of functionality.2 we study defect 

predictors learned from static code attributes since they are 

useful, easy to use, and widely used. Useful. This paper 

finds defect predictors with a probability of detection of 71 

percent. Easy to use. Static code attributes like lines of code 

and the McCabe/Halstead attributes can be automatically 

and cheaply collected, even for very large systems [11]. By 

contrast, other methods, such as manual code reviews, are 

labor-intensive. Depending on the review methods, 8 to 20 

LOC/minute can be inspected and this effort repeats for all 

members of the review team, which can be as large as four 

or six [12]. [14] In another papers where the Selecting a 

defect prediction model for maintenance resource planning 

and software insurance in this paper where the defect 

prediction models could lead to better maintenance resource 

and potentially a software system. So mostly where the data 

are been defect checking separately in any other paper web 

effort and defect can be checked properly. [13]This paper 

reviews the use of Bayesian Networks (BNs) in redacting 

software defects and software reliability. For the best quality 

of the projects the COCOMO is the one method to approach 

how the project has been most cost effective one for the 

organization and the customers then using software effort 

techniques with the most techniques can easily judge the 

effort of the project. The approach allows us to incorporate 

causal process factors as well as combine qualitative and 

quantitative measures, hence overcoming some of the well-

known limitations of traditional software metrics methods. 

Finally in all other survey checking separately in each field. 

So effort and defect can be checking in a single paper. 

III. BUILDING THE WEB EFFORT 

The BNs were built and validated using an adapted 

Knowledge Engineering of BN (KEBN) process [15], [16], 

[17] The three main steps that are part of the KEBN process 

are the Structural Development, Parameter Estimation, and 

Model validation. The KEBN process iterates over these 

steps until a complete BN is built and validated. Each of 

these steps is briefly described. Structural Development 

entails the creation of the BN’s graphical structure (causal 

graph) containing nodes (variables) and causal relationships. 

These can be identified by DEs, directly from data, or using 

a combination of both. Within the context of this work, the 

BNs’ graphs were obtained using data from the wdp 

database and current knowledge from a DE, The 

identification of values and relationships was initially 

obtained automatically using two BN tools, Hug in and 

Power Soft, and two training sets each containing 130 

projects randomly chosen, leading to four of the BN models 

used in this study. Later, another four BN models were 

created, all using a single model structure elicited by the DE 

and probabilities obtained by automatically fitting this 

structure to the same two training sets and tools previously 

used to be used with Hug in Expert and Power Soft. There 

are no strict rules as to how many discrete approximations 

should be used. Some studies have employed three [18], 

others five [14], seven [4], and eight [19]. We chose five 

because the DE participating in this study was happy with 

this choice and also because An edictal evidence from 

eliciting BNs with local Web companies has shown that 

companies find three to five categories sufficient. Both Hug 

in and Power Soft offer several discretization algorithms. 

We used the equal frequency intervals algorithm, as 

suggested in [20] and used in [21], [22], [23], and five 

intervals, as also done in [21], [22], [23]. Therefore, each 

interval contained approximately 130/5 data points. 

Sometimes, a variable presented repeated values, making it 

impossible to have exactly the same number of data points 

per interval. This was the case for variables Fots, HFotsA, 

Hnew, totHigh, FotsA, and New. None of the eight BN 

structures was optimized [17], [12],[24] (a technique used to 

reduce the number of probabilities that need to be assessed 

for the network) to guarantee that every BN node would 

have its NPT generated solely using the WDP data. The five 

effort categories used with both Hug in and Power Soft were 

given as follows: [1, 1,000.88), [1,000.88, 2,000.66), 

[2,000.66, 3,000.44), [3,000.44, 4,000.22), 

[4,000.22,5,000.11).Parameter Estimation represents the 

quantitative component of a BN, which results in 

conditional probabilities that quantify the relationships 

between variables [17]. Probabilities can be obtained via 

Expert Elicitation, automatically, or using a combination of 

both. For all eight BN causal graphs in this paper, 

parameters were obtained by automatically fitting a BN 

graph to two training sets each of 130 Web projects 

(automated learning). Hug in used the EM-Learning 

algorithm [22] and Power Soft used a proprietary algorithm 

[7]. Two validation sets, each containing 65 projects, were 

then employed for the Model Validation step to assess the 

effort prediction accuracy of each BN model. Since there is 

no de facto standard of how many projects a validation set 

should contain, we chose to use a 66:33 split, as in [5], [25]. 

Model Validation. This step validates the BN constructed 
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from the two previous steps and determines the necessity to 

revisit any of those steps. Two different validation methods 

are generally used—Model Walkthrough and Predictive 

Accuracy [26]. Both verify if predictions provided by a BN 

are, on average, better than those currently obtained by a 

DE. Predictive Accuracy is normally carried out using 

quantitative data and was the validation approach employed 

by this paper. Estimated effort for each of the projects in a 

validation set was obtained using a point forecast, computed 

using the method described in [27]. Carried out a Predictive 

accuracy procedure using two validation sets of real data 

volunteered by numerous Web companies worldwide. 

 

IV. DEFECT PREDICTION 

We learn defect predictors from static code attributes 

defined by McCabe [29] and Halstead [28]. McCabe and 

Halstead are module”-based metrics, where a module is the 

smallest unit of functionality.2 We study defect predictors 

learned from static code attributes since they are useful, easy 

to use, and widely used. Useful. This paper finds defect 

predictors with a probability of detection of 71 percent. This 

is markedly higher than other currently used industrial 

methods such as manual code reviews: A panel at IEEE 

Metrics 2002 [26] concluded that manual software reviews 

can find _ 60 percent of defects.3. Raffo found that the 

defect detection capability of industrial review methods can 

vary from pd = TR (35; 50; 65)% for full agan inspections4 

[29] to pd = TR(13; 21; 30)% for less-structured inspections. 

Easy to use. Static code attributes like lines of code and the 

McCabe/Halstead attributes can be automatically and 

cheaply collected, even for very large systems [30]. By 

contrast, other methods, such as manual code reviews, are 

labor-intensive. Depending on the review methods, 8 to 20 

LOC/minute can be inspected and this effort repeats for all 

members of the review team, which can be as large as four 

or six [34]. Our experimental method seeks the 

“best”subsets of the available attributes that are most useful 

for predicting defects. We will show that the best size for 

the “best” set is larger than 1; i.e., predictors based on single 

(as rgued by Shepherd and Ince and Fenton and fleeger), 

then we would expect lower probabilities of detection and 

Uch higher false alarm rates. 2. These new (pd; pf) figures 

are much larger than any of our prior results of mean (pd; 

pf) (36%; 17%) [4] (See Fig. 2). Despite much 

experimentation [36], [35], the only way we could achieve a 

pd > 70% was to accept a 50 percent false alarm rate. 3. 

These new results of mean(pd) = 71% are better than 

currently used industrial ethods, such as the pd _ 60% 

reported at the 2002 IEEE Metrics panel or the  edian(pd) = 

21::50 reported by Raffo.4. There is still considerable room 

for improvement, such as lower pfs and higher pds. We are 

actively researching better tode metrics which, 

potentially,will yield “better” predictors. 

 

 

V. VALIDATION OF DATA 

An experiment needs three things: 

A. data to be processed, 

B. a processing method, and 

C. a reporting method. 

This section discusses the data used in this study. 

Processing via data miners and our reporting methods are 

discussed later. All our data comes from the MDP. At the 

time of this writing, 10 data sets are available in that 

repository. Two of those data sets have a different format 

from the rest and were not used in this study. This left eight, 

shown in Fig. 3. Each module of each data sets describes the 

attributes of Table: 1 Data sets used in this study. The data 

sets cm1-05 and pc1-05 update data sets cm1 and pc1 

processed previously by the authors [that module, plus the 

number of defects known for that module. This data comes 

from eight subsystems taken from four systems. These 

systems were developed in different geographical locations 

across North America. Within a system, the subsystems 

shared some a common code base but did not pass personnel 

or code between subsystems. Fig. 4 shows the module sizes 

of our data; for example,there are 126 modules in the kc4 

data set; most of them are under 100 lines of code, but a few 

of them are more than 1,000 lines of code long. Each data 

set was preprocessed by removing the module identifier 

attribute (which is different for each row). Also, the error 

count column was converted into a Boolean attribute called 

defective? as follows:defective? =(error count >= 1) Finally, 

the error density column was removed (since it can be 

derived from line counts and error count). The preprocessed 

data sets had 38 attributes plus one target attribute 

(defective?), shown in Fig. 5, and included Halstead, 

McCabe, lines of code, and other miscellaneous attributes. 

The Halstead attributes were derived by Maurice Halstead in 

1977. He argued that modules that are hard to read are more 

likely to be fault prone [1]. Halstead estimates reading 

complexity by counting the number of operators and 

operands in a module: See the h attributes of Fig. 5. These 

three raw h Halstead attributes were then used to compute 

the H: the eight derived Halstead attributes using the 
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equations shown in Fig. 5. In between the raw and derived 

Halstead attributes are certain intermediaries (which do not 

appear in the MDP data sets): .->m=m1+m2 . Minimum 

perator count: m1* = 2, and m2* is the minimum operand 

count and equals the number of module parameters. An 

alternative to the Halstead attributes are the complexity 

attributes proposed by Thomas McCabe in 1976. Unlike 

Halstead, McCabe argued that the complexity of pathways 

between module symbols is more insightful than just a count 

of the symbols [29]. The first three lines of Fig. 5 show 

McCabe’s three main attributes for this pathway complexity. 

These are defined as follows: A module is said to have a 

flow graph; i.e., a directed graph where each node 

corresponds to a program statement and each arc indicates  

 

 
The flow of control from one statement to another. The 

Table: 2 [38] cyclomatic complexity of a module is v (G) =e 

-n +2, where G is a program’s flow graph, e is the number of 

arcs in the flow graph, and n is the number of nodes in the 

flow graph [37]. The essential complexity (ev(G)) of a 

module is the extent to which a flow graph can be “reduced” 

by decomposing all the subflowgraphs of G that are D-

structured primes (also sometimes referred to as “proper 

one-entry one-exit subflowgraphs”[37]). 

Ev(G)=v(G)_ m, where m is the number of 

subflowgraphs of G that are D-structured primes [37]. 

Finally, the design complexity (iv(G)) of a module is the 

cyclomatic complexity of a module’s reduced flow graph. 

At the end of Fig. 5[38] are a set of misc attributes that are 

less well-defined than lines of code attributes or the 

Halstead and McCabe attributes. The meaning of these 

attributes is poorly documented in the MDP database. 

Indeed, they seem to be values generated from some 

unknown tool set that was available at the time of uploading 

the data into the MDP. Since there are difficulties in 

reproducing these attributes at other sites, an argument could 

be made for removing them from this study. A 

counterargument is that if static code attributes are as weak 

as suggested by Shepherd and Ince and Fenton and Pfleeger, 

then we should use all possible attributes in order to make 

maximum use of the available information. This study took 

a middle ground: All these attributes were passed to the 

learners and they determined which ones had the most 

information. An interesting repeated pattern in our data sets 

are exponential distributions in the numeric attributes. For 

example, Fig. 6a shows the sorted McCabe v(g) attributes 

from cm1. These values form an exponential distribution 

with many small values and a few much larger values. 

Elsewhere, we have conducted limited experiments 

suggesting that a logarithmic filter on all numeric values 

might improve predictor performance [36]. Such a filter 

replaces all numerics n with their logarithms. ln(n). The 

effects of such a filter are shown in Fig. 6b: The log-filtered 

values are now more evenly spread across the y-range, 

making it easier to reason about them. To test the value of 

logfiltering, all the data was passed through one of two 

filters: 1. none; i.e., no change, or 2. logNums; i.e., 

logarithmic filtering. To avoid numerical errors with ln(0), 

all numbers under 0.000001 are replaced with ln(0:000001) 

 

VI. SOFTWARE EFFORT ESTIMATING 

TECHNIQUES 

Barry Boehm, in his classic work on software effort 

models, identified the main ways of deriving estimates of 

software development effort as:Expert judgment, where the 

advice of knowledgeable staff is solicited ;Analogy, where a 

similar, completed, project is identified and its actual effort 

is used as the basis of the estimate for the new project; 

Parkison, which identifies the staff effort available to do a 

project and uses that as the estimate?  

A. Top-down, where an overall estimate is formulated for 

the whole project which is then broken down into the 

effort required for component tasks; 

B. Bottom –up, where component tasks are identified and 

sized and these individual estimates are aggregated. 

C. Bottom up estimating Estimating methods can be 

generally divided into bottom-up and top-down 

approaches. With the bottom-up approach the estimator 

breaks the project into its component tasks and then 

estimates how much effort will be required to carry out 

each task. With a large project, the process of breaking 

down into tasks would be a repetitive one. Each task 

would be analyzed in to its component subtasks and 

theses would be further analyzed. It is suggested that 

this is repeated until you get to components that can be 

executed by a single person in about a week or two. The 

reader may wonder why this is not called a topdown 
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approach: after all, are starting from the top and 

working down. Although this top-down analysis is an 

essential precursor to bottom-up estimating, it is really a 

separate one- that of producing a work breakdown 

schedule (WBS). The bottom-up part comes in adding 

up the calculated effort for each activity to get an 

overall estimate. 

The bottom-up approach is most appropriate at the later, 

more detailed, stages of project planning. If this method os 

used early on in the project cycle then the estimator will 

have to make some assumptions about the characteristics of 

the final system, for Example the number and size of 

software components. These will be working assumptions 

that imply no commitment when it comes to the actual 

design of the application. Where a project is completely 

novel or there is no historical data available, the estimator 

would be forced to use the bottom-up approach. 

VII. COCOMO: A Parametric Model 

Boehm’s COCOMO (Constructive Cost Model) is often 

referred to in the literature on software project management, 

particularly in connection with software estimating. The 

term COCOMO really refers to a group of models. The 

basic model was built around the equation (effort)=c(size)k 

Where effort was measured in pm or the number of 

‘persons-months ’consisting , size was measured in kdsi, 

thousands of delivered source code instructions, and c and k 

were constants. 

A. Organic mode 

B.  Embedded mode 

C.  Semi mode 

 
Table: 3 COCOMO model values 

 

(a) Basic cocomo 

Effort applied=ab(kloc)^b.b[months] 

Development time=cb(effort 

applied)^b.d[months] 

People required =effort applied /evp time[count] 

Intermideate cocomo: 

E=ai(kloc)^b.iEAF(Effort adjucemt Factor) 

VIII. DEFECT DENSITY 

Defect Density (at System Testing stage)  

[Total number of Defects identified during system 

Testimg]/Actual Size of the product 

A. Defect rate 

Is th expected number of defects over a certain time 

period specified is important for cost and resource estimates 

of maintainence phase of the software life cycle. It should be 

noted that “defect rate” and defect injection rate [(Number 

of in-process-defectss)+(Number of Customer-reported 

Defects)]/Actual size of product to define defect removal 

effectiveness, we must first understand the activities in the 

development process that are related to defect injections and 

defect removals. Instead of finding the defect from the 

overall system we shall find the defects from individual 

modules or subsystems for this process the following 

expression can be used Number of Defects removed(at the 

step entry)/(Number of Defects existing at step 

entry)+(Number of Defects injected during 

development)*100 

 
Figure 3 

IX. CONCLUTION 

In this paper has been fully explained with the Bayseian 

networks how to implement the bayseian model. With that 

process to check the web application effectiveness in that 

process with the help of the WDP database. From this 

process mainly defectiveness and quality checking in this 

process are also have been involved with COCOMO model 

and MCcabes and Halsted model. Then effectiveness of the 

process and quality control are also been checked with some 

equations. Finally with this paper web application project 

can be fully controlled and quality product can get from this 

method. 
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