
��������	�
����	�
�����������

��� ��!�����"�������

�#"#�� $�%�%#��

�����&���'���������(((��)����������
�

© 2010, IJARCS All Rights Reserved 308

�����������	
��
�	�

Web Effort and Defect Prediction using Bayseian Model

Nandakumar.P*
School of Information Technology

VIT University, Vellore, India

Nandakumarp2005@vit.ac.in

Magesh.G
School of Information Technology

VIT University, Vellore, India

Magesh.g@vit.ac.in

Anitha Kumari.A

School of Information Technology

VIT University, Vellore, India

Anithakumari.a@vit.ac.in

Abstract: objective. The objective of the paper is the web effort prediction how effectively the web application project will be developed and

what are all the defects, quality control also developed in the web application projects by using the COCOMO and software effort techniques are

also been involved. In the project how effectively those projects will be developed. The approach allows us to incorporate causal process factors

as well as combine qualitative and quantitative measures, hence overcoming some of the well-known limitations of traditional software metrics

methods. What are all the effort prediction is applied and what are all the defects present in that by using the Bayesian network (BN) model and

defect prediction using the “McCabe’s versus Halstead versus lines of code counts” for generating defect predictors. By suing this method can

easily find the defect prediction in which modules the most errors are occurring. We show here that such debates are irrelevant since how the

attributes are used to build predictors is much more important than which particular attributes are used. Also, contrary to prior pessimism, we

show that such defect predictors are demonstrably useful.

I. INTRODUCTION

In the [39] Web effort project is the most important one

where to check the effort Estimation, the process by which

effort is most predictable one and used to determine Costs

and resource should be allocated, enabling projects to be

delivered on time and within budget. Effort estimation is a

very tough to determine in web application project it should

be more comparatively work with each domain. Within the

context of Web effort estimation, numerous studies

investigated the use of effort prediction techniques.

However, to date, only Mendes [2], [3], [4] has investigated

the inclusion of uncertainty, inherent to effort estimation,

into a model for Web effort estimation. A BN is a model

Which supports reasoning with uncertainty due to the way in

which it incorporates existing complex domain knowledge

[1], [7]? Herein, knowledge is represented using two parts.

The first, which is the qualitative part, represents the

structure of aBNas depicted by a directed acyclic graph

(digraph; see Fig. 1).

The digraph’s nodes represent the relevant variables

(factors) in the domain being modeled, which can be of

different types (e.g., observable or latent, categorical). The

digraph’s arcs represent the causal relationships between

variables, where relationships are quantified probabilistic

cally [1], [6], [8]. The second, which is the quantitative part,

associates a node probability table (NPT) to each node, its

probability distribution. A parent node’s NPT describes the

relative probability of each state (value); a child node’s NPT

describes the relative probability of each state conditional on

every combination of states of its parents (e.g., the relative

probability of total effort (TE) being “Low” conditional on

Size (new Web pages; SNWP) being “Low” is 0.8). Each

column in an NPT represents a conditional probability

distribution and, therefore, its values sum up to 1 [1]. Once

the BN is valued in each module automatically in all other

modules the values will be generated automatically. In this

paper where the BN method has been used for web effort

estimation and we having the opportunity to gather data on

the industrial web application projects in that newly created

dp (web effort and defect prediction) database in that data to

create the BNs presented herein. The project data

characterize Web projects using size measures and cost

drivers targeted at early effort estimation. Since we had a

data set of real industrial Web projects, we were also able to

compare the accuracy of the Web effort BNs to that using

Manual Stepwise Regression (MSWR) [2].

A. P1used data in the WDP database.

B. P2 used data in another Web projects as Data.

P1 must be used in a single BN tool, Hug in, for

structure and parameter learning, p2 used two tools Hug in

and power soft. S1 used the entire WDP database to elicit

Nandakumar.P et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,308-314

© 2010, IJARCS All Rights Reserved 309

the initial BN causal graph S1 in effect used a hybrid BN

model, where the causal graph was expert driven and its

probabilities data driven. [a1]Their BN model was validated.

Then the next will be the checking what are all the defects

must be presenting in the web application projects. In this

defect prediction mostly the cost is very cheap and

effectively can use this method by using the Bayesian

method is that minor changes in the data(such as a slightly

different sample used to learn a predictor) can make

different attributes appear most useful for defect prediction.

When we using the McCabe’s complexity attribute, just

because of small variations to the data. [9] Where the

Halstead method used for the determining the defects in the

web application projects using these two methods McCabe’s

and Halstead. Whether the Web application project will give

better solution or not, what are all defects must be presented

in that, what are all should be remove from that one, which

area should be modified and data’s occurring there should

be valuable one or not . Those things should be evaluated in

this paper.

II. RELATED WORK

There have been numerous attempts to model effort

estimation for Web projects, but, except for S1, none have

used a probabilistic model beyond the use of a single

probability distribution. TSE.2008.64, presents a summary

of previous studies. Whenever two or more studies

compared different effort estimation techniques using the

same data set, we only included the study that used the

greatest number of effort estimation techniques. For the

defect predictions McCabe [10] and Halstead [9]. McCabe

and Halstead are “module”-based metrics, where a module

is the smallest unit of functionality.2 we study defect

predictors learned from static code attributes since they are

useful, easy to use, and widely used. Useful. This paper

finds defect predictors with a probability of detection of 71

percent. Easy to use. Static code attributes like lines of code

and the McCabe/Halstead attributes can be automatically

and cheaply collected, even for very large systems [11]. By

contrast, other methods, such as manual code reviews, are

labor-intensive. Depending on the review methods, 8 to 20

LOC/minute can be inspected and this effort repeats for all

members of the review team, which can be as large as four

or six [12]. [14] In another papers where the Selecting a

defect prediction model for maintenance resource planning

and software insurance in this paper where the defect

prediction models could lead to better maintenance resource

and potentially a software system. So mostly where the data

are been defect checking separately in any other paper web

effort and defect can be checked properly. [13]This paper

reviews the use of Bayesian Networks (BNs) in redacting

software defects and software reliability. For the best quality

of the projects the COCOMO is the one method to approach

how the project has been most cost effective one for the

organization and the customers then using software effort

techniques with the most techniques can easily judge the

effort of the project. The approach allows us to incorporate

causal process factors as well as combine qualitative and

quantitative measures, hence overcoming some of the well-

known limitations of traditional software metrics methods.

Finally in all other survey checking separately in each field.

So effort and defect can be checking in a single paper.

III. BUILDING THE WEB EFFORT

The BNs were built and validated using an adapted

Knowledge Engineering of BN (KEBN) process [15], [16],

[17] The three main steps that are part of the KEBN process

are the Structural Development, Parameter Estimation, and

Model validation. The KEBN process iterates over these

steps until a complete BN is built and validated. Each of

these steps is briefly described. Structural Development

entails the creation of the BN’s graphical structure (causal

graph) containing nodes (variables) and causal relationships.

These can be identified by DEs, directly from data, or using

a combination of both. Within the context of this work, the

BNs’ graphs were obtained using data from the wdp

database and current knowledge from a DE, The

identification of values and relationships was initially

obtained automatically using two BN tools, Hug in and

Power Soft, and two training sets each containing 130

projects randomly chosen, leading to four of the BN models

used in this study. Later, another four BN models were

created, all using a single model structure elicited by the DE

and probabilities obtained by automatically fitting this

structure to the same two training sets and tools previously

used to be used with Hug in Expert and Power Soft. There

are no strict rules as to how many discrete approximations

should be used. Some studies have employed three [18],

others five [14], seven [4], and eight [19]. We chose five

because the DE participating in this study was happy with

this choice and also because An edictal evidence from

eliciting BNs with local Web companies has shown that

companies find three to five categories sufficient. Both Hug

in and Power Soft offer several discretization algorithms.

We used the equal frequency intervals algorithm, as

suggested in [20] and used in [21], [22], [23], and five

intervals, as also done in [21], [22], [23]. Therefore, each

interval contained approximately 130/5 data points.

Sometimes, a variable presented repeated values, making it

impossible to have exactly the same number of data points

per interval. This was the case for variables Fots, HFotsA,

Hnew, totHigh, FotsA, and New. None of the eight BN

structures was optimized [17], [12],[24] (a technique used to

reduce the number of probabilities that need to be assessed

for the network) to guarantee that every BN node would

have its NPT generated solely using the WDP data. The five

effort categories used with both Hug in and Power Soft were

given as follows: [1, 1,000.88), [1,000.88, 2,000.66),

[2,000.66, 3,000.44), [3,000.44, 4,000.22),

[4,000.22,5,000.11).Parameter Estimation represents the

quantitative component of a BN, which results in

conditional probabilities that quantify the relationships

between variables [17]. Probabilities can be obtained via

Expert Elicitation, automatically, or using a combination of

both. For all eight BN causal graphs in this paper,

parameters were obtained by automatically fitting a BN

graph to two training sets each of 130 Web projects

(automated learning). Hug in used the EM-Learning

algorithm [22] and Power Soft used a proprietary algorithm

[7]. Two validation sets, each containing 65 projects, were

then employed for the Model Validation step to assess the

effort prediction accuracy of each BN model. Since there is

no de facto standard of how many projects a validation set

should contain, we chose to use a 66:33 split, as in [5], [25].

Model Validation. This step validates the BN constructed

Nandakumar.P et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,308-314

© 2010, IJARCS All Rights Reserved 310

from the two previous steps and determines the necessity to

revisit any of those steps. Two different validation methods

are generally used—Model Walkthrough and Predictive

Accuracy [26]. Both verify if predictions provided by a BN

are, on average, better than those currently obtained by a

DE. Predictive Accuracy is normally carried out using

quantitative data and was the validation approach employed

by this paper. Estimated effort for each of the projects in a

validation set was obtained using a point forecast, computed

using the method described in [27]. Carried out a Predictive

accuracy procedure using two validation sets of real data

volunteered by numerous Web companies worldwide.

IV. DEFECT PREDICTION

We learn defect predictors from static code attributes

defined by McCabe [29] and Halstead [28]. McCabe and

Halstead are module”-based metrics, where a module is the

smallest unit of functionality.2 We study defect predictors

learned from static code attributes since they are useful, easy

to use, and widely used. Useful. This paper finds defect

predictors with a probability of detection of 71 percent. This

is markedly higher than other currently used industrial

methods such as manual code reviews: A panel at IEEE

Metrics 2002 [26] concluded that manual software reviews

can find _ 60 percent of defects.3. Raffo found that the

defect detection capability of industrial review methods can

vary from pd = TR (35; 50; 65)% for full agan inspections4

[29] to pd = TR(13; 21; 30)% for less-structured inspections.

Easy to use. Static code attributes like lines of code and the

McCabe/Halstead attributes can be automatically and

cheaply collected, even for very large systems [30]. By

contrast, other methods, such as manual code reviews, are

labor-intensive. Depending on the review methods, 8 to 20

LOC/minute can be inspected and this effort repeats for all

members of the review team, which can be as large as four

or six [34]. Our experimental method seeks the

“best”subsets of the available attributes that are most useful

for predicting defects. We will show that the best size for

the “best” set is larger than 1; i.e., predictors based on single

(as rgued by Shepherd and Ince and Fenton and fleeger),

then we would expect lower probabilities of detection and

Uch higher false alarm rates. 2. These new (pd; pf) figures

are much larger than any of our prior results of mean (pd;

pf) (36%; 17%) [4] (See Fig. 2). Despite much

experimentation [36], [35], the only way we could achieve a

pd > 70% was to accept a 50 percent false alarm rate. 3.

These new results of mean(pd) = 71% are better than

currently used industrial ethods, such as the pd _ 60%

reported at the 2002 IEEE Metrics panel or the edian(pd) =

21::50 reported by Raffo.4. There is still considerable room

for improvement, such as lower pfs and higher pds. We are

actively researching better tode metrics which,

potentially,will yield “better” predictors.

V. VALIDATION OF DATA

An experiment needs three things:

A. data to be processed,

B. a processing method, and

C. a reporting method.

This section discusses the data used in this study.

Processing via data miners and our reporting methods are

discussed later. All our data comes from the MDP. At the

time of this writing, 10 data sets are available in that

repository. Two of those data sets have a different format

from the rest and were not used in this study. This left eight,

shown in Fig. 3. Each module of each data sets describes the

attributes of Table: 1 Data sets used in this study. The data

sets cm1-05 and pc1-05 update data sets cm1 and pc1

processed previously by the authors [that module, plus the

number of defects known for that module. This data comes

from eight subsystems taken from four systems. These

systems were developed in different geographical locations

across North America. Within a system, the subsystems

shared some a common code base but did not pass personnel

or code between subsystems. Fig. 4 shows the module sizes

of our data; for example,there are 126 modules in the kc4

data set; most of them are under 100 lines of code, but a few

of them are more than 1,000 lines of code long. Each data

set was preprocessed by removing the module identifier

attribute (which is different for each row). Also, the error

count column was converted into a Boolean attribute called

defective? as follows:defective? =(error count >= 1) Finally,

the error density column was removed (since it can be

derived from line counts and error count). The preprocessed

data sets had 38 attributes plus one target attribute

(defective?), shown in Fig. 5, and included Halstead,

McCabe, lines of code, and other miscellaneous attributes.

The Halstead attributes were derived by Maurice Halstead in

1977. He argued that modules that are hard to read are more

likely to be fault prone [1]. Halstead estimates reading

complexity by counting the number of operators and

operands in a module: See the h attributes of Fig. 5. These

three raw h Halstead attributes were then used to compute

the H: the eight derived Halstead attributes using the

Nandakumar.P et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,308-314

© 2010, IJARCS All Rights Reserved 311

equations shown in Fig. 5. In between the raw and derived

Halstead attributes are certain intermediaries (which do not

appear in the MDP data sets): .->m=m1+m2 . Minimum

perator count: m1* = 2, and m2* is the minimum operand

count and equals the number of module parameters. An

alternative to the Halstead attributes are the complexity

attributes proposed by Thomas McCabe in 1976. Unlike

Halstead, McCabe argued that the complexity of pathways

between module symbols is more insightful than just a count

of the symbols [29]. The first three lines of Fig. 5 show

McCabe’s three main attributes for this pathway complexity.

These are defined as follows: A module is said to have a

flow graph; i.e., a directed graph where each node

corresponds to a program statement and each arc indicates

The flow of control from one statement to another. The

Table: 2 [38] cyclomatic complexity of a module is v (G) =e

-n +2, where G is a program’s flow graph, e is the number of

arcs in the flow graph, and n is the number of nodes in the

flow graph [37]. The essential complexity (ev(G)) of a

module is the extent to which a flow graph can be “reduced”

by decomposing all the subflowgraphs of G that are D-

structured primes (also sometimes referred to as “proper

one-entry one-exit subflowgraphs”[37]).

Ev(G)=v(G)_ m, where m is the number of

subflowgraphs of G that are D-structured primes [37].

Finally, the design complexity (iv(G)) of a module is the

cyclomatic complexity of a module’s reduced flow graph.

At the end of Fig. 5[38] are a set of misc attributes that are

less well-defined than lines of code attributes or the

Halstead and McCabe attributes. The meaning of these

attributes is poorly documented in the MDP database.

Indeed, they seem to be values generated from some

unknown tool set that was available at the time of uploading

the data into the MDP. Since there are difficulties in

reproducing these attributes at other sites, an argument could

be made for removing them from this study. A

counterargument is that if static code attributes are as weak

as suggested by Shepherd and Ince and Fenton and Pfleeger,

then we should use all possible attributes in order to make

maximum use of the available information. This study took

a middle ground: All these attributes were passed to the

learners and they determined which ones had the most

information. An interesting repeated pattern in our data sets

are exponential distributions in the numeric attributes. For

example, Fig. 6a shows the sorted McCabe v(g) attributes

from cm1. These values form an exponential distribution

with many small values and a few much larger values.

Elsewhere, we have conducted limited experiments

suggesting that a logarithmic filter on all numeric values

might improve predictor performance [36]. Such a filter

replaces all numerics n with their logarithms. ln(n). The

effects of such a filter are shown in Fig. 6b: The log-filtered

values are now more evenly spread across the y-range,

making it easier to reason about them. To test the value of

logfiltering, all the data was passed through one of two

filters: 1. none; i.e., no change, or 2. logNums; i.e.,

logarithmic filtering. To avoid numerical errors with ln(0),

all numbers under 0.000001 are replaced with ln(0:000001)

VI. SOFTWARE EFFORT ESTIMATING

TECHNIQUES

Barry Boehm, in his classic work on software effort

models, identified the main ways of deriving estimates of

software development effort as:Expert judgment, where the

advice of knowledgeable staff is solicited ;Analogy, where a

similar, completed, project is identified and its actual effort

is used as the basis of the estimate for the new project;

Parkison, which identifies the staff effort available to do a

project and uses that as the estimate?

A. Top-down, where an overall estimate is formulated for

the whole project which is then broken down into the

effort required for component tasks;

B. Bottom –up, where component tasks are identified and

sized and these individual estimates are aggregated.

C. Bottom up estimating Estimating methods can be

generally divided into bottom-up and top-down

approaches. With the bottom-up approach the estimator

breaks the project into its component tasks and then

estimates how much effort will be required to carry out

each task. With a large project, the process of breaking

down into tasks would be a repetitive one. Each task

would be analyzed in to its component subtasks and

theses would be further analyzed. It is suggested that

this is repeated until you get to components that can be

executed by a single person in about a week or two. The

reader may wonder why this is not called a topdown

Nandakumar.P et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,308-314

© 2010, IJARCS All Rights Reserved 312

approach: after all, are starting from the top and

working down. Although this top-down analysis is an

essential precursor to bottom-up estimating, it is really a

separate one- that of producing a work breakdown

schedule (WBS). The bottom-up part comes in adding

up the calculated effort for each activity to get an

overall estimate.

The bottom-up approach is most appropriate at the later,

more detailed, stages of project planning. If this method os

used early on in the project cycle then the estimator will

have to make some assumptions about the characteristics of

the final system, for Example the number and size of

software components. These will be working assumptions

that imply no commitment when it comes to the actual

design of the application. Where a project is completely

novel or there is no historical data available, the estimator

would be forced to use the bottom-up approach.

VII. COCOMO: A Parametric Model

Boehm’s COCOMO (Constructive Cost Model) is often

referred to in the literature on software project management,

particularly in connection with software estimating. The

term COCOMO really refers to a group of models. The

basic model was built around the equation (effort)=c(size)k

Where effort was measured in pm or the number of

‘persons-months ’consisting , size was measured in kdsi,

thousands of delivered source code instructions, and c and k

were constants.

A. Organic mode

B. Embedded mode

C. Semi mode

Table: 3 COCOMO model values

(a) Basic cocomo

Effort applied=ab(kloc)^b.b[months]

Development time=cb(effort

applied)^b.d[months]

People required =effort applied /evp time[count]

Intermideate cocomo:

E=ai(kloc)^b.iEAF(Effort adjucemt Factor)

VIII. DEFECT DENSITY

Defect Density (at System Testing stage)

[Total number of Defects identified during system

Testimg]/Actual Size of the product

A. Defect rate

Is th expected number of defects over a certain time

period specified is important for cost and resource estimates

of maintainence phase of the software life cycle. It should be

noted that “defect rate” and defect injection rate [(Number

of in-process-defectss)+(Number of Customer-reported

Defects)]/Actual size of product to define defect removal

effectiveness, we must first understand the activities in the

development process that are related to defect injections and

defect removals. Instead of finding the defect from the

overall system we shall find the defects from individual

modules or subsystems for this process the following

expression can be used Number of Defects removed(at the

step entry)/(Number of Defects existing at step

entry)+(Number of Defects injected during

development)*100

Figure 3

IX. CONCLUTION

In this paper has been fully explained with the Bayseian

networks how to implement the bayseian model. With that

process to check the web application effectiveness in that

process with the help of the WDP database. From this

process mainly defectiveness and quality checking in this

process are also have been involved with COCOMO model

and MCcabes and Halsted model. Then effectiveness of the

process and quality control are also been checked with some

equations. Finally with this paper web application project

can be fully controlled and quality product can get from this

method.

Nandakumar.P et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,308-314

© 2010, IJARCS All Rights Reserved 313

X. ACKNOWLEDGEMENT

This work is done with the help of Prof. Raju is a

graduate of the Indian and US universities with

degrees in Physics, Electronics, Industrial Engineering

and Management.

XI. REFERENCES

[1] F.V. Jensen, An Introduction to Bayesian Networks.

UCL Press, 1996.

[2] B.A. Kitchenham, “A Procedure for Analysing

Unbalanced Data Sets,” IEEE Trans. Software Eng.,

vol. 24, no. 4, pp. 48-301, Apr. 1998.

[3] E. Mendes, “PredictingWeb Development Effort Using

a Bayesian Network,” Proc. Int’l Conf. Evaluation and

Assessment in Software Eng., pp. 83- 93, 2007.

[4] E. Mendes, “The Use of a Bayesian Network for Web

Effort Estimation,” Proc. Seventh Int’l Conf. Web Eng.,

pp. 90-104, 2007.

[5] E. Mendes, “A Comparison of Techniques for Web

Effort Estimation,” Proc. ACM/IEEE Int’l Symp.

Empirical Software Eng.,pp. 334-343, 2007.

[6] M. Neil, N. Fenton, and L. Nielsen, “Building Large-

Scale Bayesian Networks,” The Knowledge Eng. Rev.

(KER), vol. 15, no. 3, pp. 257-54, 2000.

[7] J. Pearl, Probabilistic Reasoning in Intelligent Systems.

Morgan Kaufmann, 1988.

[8] O. Woodberry, A. Nicholson, K. Korb, and C. Pollino,

“Parameterising Bayesian Networks,” Proc. Australian

Conf. Artificial Intelligence, pp. 1101- 1107, 2004

[9] M. Halstead, Elements of Software Science. Elsevier,

1977.

[10] T. McCabe, “A Complexity Measure,” IEEE Trans.

Software Eng., vol. 2, no. 4, pp. 308-320, Dec. 1976.

[11] N. Nagappan and T. Ball, “Static Analysis Tools as

Early Indicators of Pre-Release Defect Density,” Proc.

Int’l Conf. Software Eng., 2005

[12] T. Menzies, D. Raffo, S. Setamanit, Y. Hu, and S.

Tootoonian, “Model-Based Tests of Truisms,” Proc.

IEEE Automated Software Eng. Conf., 2002

[13] Using Bayesian Networks to Predict Software Defects

and Reliability Norman Fenton, Martin Neil, David

Marquez, Dep. of Computer Science Queen Mary,

University of London.

[14] Selecting a defect prediction model for

maintenanceresource planning and software insurance

Paul Luo Li, Mary Shaw, Jim Herbsleb, Carnegie

Mellon University 5000 Forbes Ave Pittsburgh PA

15213 1-72-38-3043

[15] M.J. Druzdzel, A. Onisko, D. Schwartz, J.N. Dowling,

and H. Wasyluk, “Knowledge Engineering for Very

Large Decision- Analytic Medical Models,” Proc. Ann.

Meeting Am. Medical Informatics Assoc., pp. 1049-

1054, 1999.

[16] S.M. Mahoney and K.B. Laskey, “Network Engineering

for Complex Belief Networks,” Proc. 12th Ann. Conf.

Uncertainty in Artificial Intelligence, pp. 389-396,

1996.

[17] O. Woodberry, A. Nicholson, K. Korb, and C. Pollino,

“Parameterising Bayesian Networks,” Proc. Australian

Conf. Artificial Intelligence, pp. 1101- 1107, 2004.

[18] P.C. Pendharkar, G.H. Subramanian, and J.A. Rodger,

“A Probabilistic Model for Predicting Software

Development Effort,” IEEE Trans. Software Eng., vol.

31, no. 7, pp. 615-624, July 2005.

[19] I. Stamelos, L. Angelis, P. Dimou, and E. Sakellaris,

“On the Use of Bayesian Belief Networks for the

Prediction of Software Productivity,” Information and

Software Technology, vol. 45, no. 1, pp. 51-60(10), Jan.

2003.

[20] A.J. Knobbe and E.K.Y. Ho, “Numbers in Multi-

Relational Data Mining,” Proc. Ninth European Conf.

Principles and Practice of Knowledge Discovery in

Databases), 2005.

[21] E. Mendes, “PredictingWeb Development Effort Using

a Bayesian Network,” Proc. Int’l Conf. Evaluation and

Assessment in Software Eng., pp. 83- 93, 2007.

[22] E. Mendes, “The Use of a Bayesian Network for Web

Effort Estimation,” Proc. Seventh Int’l Conf. Web Eng.,

pp. 90-104, 2007.

[23] E. Mendes, “A Comparison of Techniques for Web

Effort Estimation,” Proc. ACM/IEEE Int’l Symp.

Empirical Software Eng., pp. 334-343, 2007.

[25] J. Pearl, Probabilistic Reasoning in Intelligent Systems.

Morgan Kaufmann, 1988.

[26] O. Woodberry, A. Nicholson, K. Korb, and C. Pollino,

“Parameterising Bayesian Networks,” Proc. Australian

Conf. Artificial Intelligence, pp. 1101- 1107, 2004.

[27] P.C. Pendharkar, G.H. Subramanian, and J.A. Rodger,

“A Probabilistic Model for Predicting Software

Development Effort,” IEEE Trans. Software Eng., vol.

31, no. 7, pp. 615-624, July 2005.

[28] M. Halstead, Elements of Software Science. Elsevier,

1977.

[29] T. McCabe, “A Complexity Measure,” IEEE Trans.

Software Eng., vol. 2, no. 4, pp. 308-320, Dec. 1976.

[30] N. Nagappan and T. Ball, “Static Analysis Tools as

Early Indicators of Pre-Release Defect Density,” Proc.

Int’l Conf. Software Eng., 2005.

[31] F. Shull, V.B. Boehm, A. Brown, P. Costa, M. Lindvall,

D. Port, I. Rus, R. Tesoriero, and M. Zelkowitz, “What

We Have Learned About Fighting Defects,” Proc.

Eighth Int’l Software Metrics Symp., pp. 249-258,

2002.

[32] M. Fagan, “Design and Code Inspections to Reduce

Errors in Program Development,” IBM Systems J., vol.

15, no. 3, 1976

[33] T. Menzies, D. Raffo, S. Setamanit, Y. Hu, and S.

Tootoonian, “Model-Based Tests of Truisms,” Proc.

IEEE Automated Software Eng. Conf., 2002.

[34] C. Blake and C. Merz, “UCI Repository of Machine

Learning Databases,”

http://www.ics.uci.edu/~mlearn/MLRepository html,

1998.

[35] T. Menzies, J.D. Stefano, K. Ammar, K. McGill, P.

Callis, R. Chapman, and J. Davis, “When Can We Test

Less?” Proc. IEEE Software Metrics Symp., 2003.

[36] T. Menzies, J.S. DiStefeno, M. Chapman, and K.

Mcgill, “Metrics that Matter,” Proc. 27th NASA SEL

Workshop Software Eng., 2002.. [37]N.E. Fenton and

S. Pfleeger, Software Metrics: A Rigorous and Practical

Approach, second ed. Int’l Thompson Press, 1995.

[38] Data Mining Static Code Attributes to Learn Defect

Predictors

Nandakumar.P et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,308-314

© 2010, IJARCS All Rights Reserved 314

[39] Bayesian Network Models for Web Effort Prediction: A

Comparative Study Emilia Mendes and Nile Mosley

Book: Software quality assurance, principles and

practice by: Nina S Godbole

