
Volume 4, No. 4, March-April 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 241

ISSN No. 0976-5697

Join Queries Translation from SQL to XML
Bhargavi K.*

Department of Information Science and Engineering,
Siddaganga Institute of Technology
Tumkur-572 103, Karnataka, India

bhargavi.tumkur@gmail.com

Chaithra H. S.
Wipro InfoTech, Wipro Limited,

Bangalore-560 035, Karnataka, India
chaithrahs.be@gmail.com

Abstract- SQL (Structured Query Language) was one of the standardized query languages for requesting information from a database. Over the past
few years organizations are using SQL for storing and managing the organization specific information. At the same time there is an emerging trend
towards XML (Extensible Markup Language), and it has become a standard for information exchange over the internet. Users/Developers are
supposed to use two different kinds of languages for data reception and manipulation. This problem is overcome by converting the user’s SQL
queries into XML. In this paper, we have developed a converter tool to convert SQL join (Left, Right, and Full) queries into XML. As a result users
can access XML database through SQL queries only.

Index Terms— SQL; XML; XPath; RDBMS; Query Converter

I. INTRODUCTION

SQL is a special purpose programming language designed
for managing data in Relational Database Management
Systems (RDBMS). SQL was one of the standardized query
languages for requesting information from a database, but
nowadays there is a growing trend towards XML. XML [1] [2]
is a markup language that defines a set of rules for encoding
documents in a format that is both human readable and
machine readable [3]. The design goals of XML emphasize
simplicity, generality, and usability over the Internet [4].
XPath [5] is used to traverse through elements and attributes
in an XML document. Although the design of XML focuses
on documents, it is widely used for the representation of
arbitrary data structures like web services and it has become a
standard for data (information) exchange over the web [6] [7]
[8].

Scalability, reliability, performance regularity, etc. SQL is
well understandable query language and it has been the
standard language for manipulating data in RBDMS. Over the
past few decades organizations are using RDBMS and SQL
for storing and managing the data. It will become an overhead
for the organizations to give up the existing RDBMS entirely,
translate all of the documents into XML format.

Users are supposed to use two different kinds of languages
for data reception and manipulation i.e., SQL for RDBMS,
and XPath for XML. Users may not know various query
languages syntax, and semantics; so in order to overcome this
problem we have to convert SQL queries into XPath
expressions [12], so that users can access and manipulate the
data on RDBMS, and XML databases using SQL [13] [14]
[15]. This in turn reduces the burden of learning different
kinds of languages for users. In this paper we present a novel
framework, where SQL join (Left, Right, and Full) queries are
converted first to XPath expressions then to XML data. It also
provides the detailed transformation process of conversion
(SQL to XML) along with their relevant algorithms. We have

also developed a converter tool to demonstrate the framework.
The rest of the paper is organized as follows: section 2

provides some related works on query conversion, section 3
provides translation framework, section 4 gives the trans-
formation process, section 5 discusses algorithms developed
for query conversion, section 6 gives the benefits of XML,
section 7 provides snapshots of the developed converter tool,
and finally section 8 draws the conclusion.

II. RELATED WORKS

A relational database is a collection of data items
organized as a set of formally described tables from which
data can be accessed easily. The software used in relational
database is called as RDBMS. RDBMS [9] is the basis for
SQL, and for all modern database systems such as MSSQL
Server, IBM DB2, Oracle, MySQL, and Microsoft Access
[10]. The data in RDBMS is stored in database objects called
tables. A table is a collection of related data entries and it
consists of columns and rows. RDBMS [11] is one of the
successful database management systems, because of its
features like

In [16], a framework is proposed to transform the SQL
queries into XUpdate expressions. SQL has been used, as it
has long been the standard query language. Users are allowed
to access XML, and relational databases through the SQL
query language by using the proposed framework. Thus only
INSERT and UPDATE SQL queries are converted into
XQuery’s.

In [17], the BEA AquaLogic Data Services platform (DSP)
provides a service-oriented, XML-based view of
heterogeneous enterprise data sources. The AquaLogic DSP
includes a JDBC driver that connects the SQL with the XML
world through a SQL to XQuery translator. The method is
confined to AquaLogic DSP and essentially focus on XQuery
1.0. XQuery 1.0 supports only reads and not updates. Thus
only SQL SELECT statements are supported.

A framework is proposed in [18] to transform SQL

Bhargavi K. et al, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,241-247

© 2010, IJARCS All Rights Reserved 242

statements into XPath expressions. Users are allowed to access
XML, and relational databases through the SQL query
language by using the proposed framework. Thus only
SELECT, DELETE, and RENAME SQL queries are
converted into XPath expressions.

The [19] explores the feasibility of accessing XML data
through SQL interfaces, called Relational over XML (ROX).
It highlights the forces that are driving the industry to evolve
towards ROX. It discusses the impact of denormalization of
data in XML documents both from a semantic and
performance perspective. The implications of ROX for
manageability and query optimization is bulleted.

The [20], three semantics-based schema conversion
methods are presented. First method converts an XML schema
to a relational schema, second method derives a nested
structured XML schema from a flat relational schema by
repeatedly applying nest operator so that the resulting XML
schema becomes hierarchical, and third method takes a
relational schema as input and generates an equivalent XML
schema as output.

III. SQL TO XML TRANSLATION FRAMEWORK

In this section we present a novel framework for SQL to
XML translation. The scheme of SQL to XML conversion is
shown in Figure 1.

The framework operates through the following steps:
User will upload XML File to Server, which will be treated

as XML Database (XML Repository). A sample XML file is
shown in Fig 2

User gives SQL Join query as input to the Query
Converter. In-side the converter there are 2 components for
processing the input i.e., Query Analyzer, and Query Mapper.

In the Query Analyzer the SQL join query will be splitted
and taken into different variables in order to form XPath, i.e.,
the parent and child node assumption made by the Query
converter will be sent to Query Mapper to determine whether
the assumption made is correct or wrong.

Query Mapper will send request to XML Database and
gets the XML Data, Query Mapper analyses the data and
determines the parent and child nodes. Then compares its
result with the assumption sent by Query converter, and sends
the result as true if the assumption made by Query Converter
is correct, or else sends the result as false.

Figure 1. Framework of query translation

Depending on the result obtained by Query Analyzer, and
Query Mapper; Query converter will do further processing and
form the XPath Expression.

XPath Processor processes the received XPath expression
to get the selected set of nodes. XPath Processor will then
send the request to XML database, and in turn obtain the XML
data corresponding to the selected set of nodes.

Figure. 2. Sample XML file

Bhargavi K. et al, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,241-247

© 2010, IJARCS All Rights Reserved 243

IV. QUERY TRANSFORMATION

In this section we describe how to transform queries ex-
pressed in SQL to XML. The transformation process is shown
in Figure 2.

Transformation process happens through following steps:
Collecting input from user: Query converter prompts user

to provide the input (SQL Join Query).
Validating Syntax of SQL Query: Syntax Verification is

done by Splitting the SQL Query. Few validations are done
such as, keywords presence, keywords spelling, keywords
positions, and braces positions and counts.

Extracting Query to variables and Forming Trees: SQL
Join Query is splitted, outer query parts are extracted to
appropriate variables, and inner select query is extracted to
array variables as trees. Table names are identified based on
appropriate query position in the tree structure. Parent and
child table names are assumed from the identified table names.

Mapping of Tables to XML Tags: Assumed parent and
child table names are compared with the parent and child
XML Tags that are determined by analyzing the Xml data. If
there exists a match mapping is done, else the assumption is
changed.

Formation of XPath: From the appropriate variables, trees,
mapped Variables; XPath is formed as follows:
//ParentTableName[ParentTableWhereConditionClause] /
ChildTableName[ChildTableWhereConditionClause] /
OuterSelectColumnsClause

Presenting the output to user: XPath Processor processes
the formulated XPath and generates the XML data.

Figure. 3. Transformation process

V. ALGORITHMS

In this section we discuss the algorithms that are developed
for query conversion. Mainly we concentrate on Query
Converter, Query Analyzer, and Query Mapper, XPath

Processor modules of the translation framework.
Query Converter

Query Converter is the central component in the
framework of query translation. It takes SQL join query as
input and extracts its portions to appropriate variables; it also
identifies the TableNames, SelectClauseColumns, and
WhereClause conditions by calling the Subroutine Query
Analyzer. Make assumptions of parent and child table names
and related contents. Check whether the assumption is correct
or not by calling Query Mapper subroutine. If Query Mapper
return true then assumption is correct otherwise change the
assumption, then proceed with further processing.
OuterSelectColumnsClause Variable is splitted and each select
column is taken into Array. For each column in the outer
select columns clause looping is done. In each iteration; if
column is present in parent table then Xpath is formed as fol-
lows://ParentTableName[ParentTableWhereConditionClause]/
ColumnName, else if column is present in child table, then
XPath is formed as follows: XPath =//Parent-
TableName[ParentWhereConditionsClause]/[ChildTable-
NameChildWhereConditionsClause]/ColumnName. The
working of Query Converter is shown in algorithm 1.
Query Analyzer

Query Analyzer is one of the sub-component in the Query
Converter component of the proposed query translation
framework. It Processes the inner select query to get inner
select query portions which is specified in the input parameter.
Inner SQL query is splitted and extracted to appropriate
positions in the tree. Requested portion of inner select query is
then returned by extracting it from appropriate positions in the
tree. The logic of Query Analyzer is given in algorithm 2.
Query Mapper

Query Mapper is one of the sub-component in the Query
Converter component of the proposed query translation
framework. Assumed parent and child table names will be
passed as input to this sub-component. XPathDocument object
is created, which is used to create XPath Navigator. Using
navigator control is moved to root then to its child, there by
identifying the parent and child tag names. Compare the
identified parent and child tag names with their respective
assumed table names; if there exists a match then return true
else return false. The working of Query Mapper is given in
algorithm 3.
XPath Processor

XPath Processor is one of the components in the proposed
query translation framework. Generated XPath will be passed

Algorithm 1 Working of Query Converter

1: Begin
2: Accept the SQL join query as input from user.
3: Extract the portions of the SQLJoinQuery into

respective variables (OuterSelectColumnsClause,
LeftSideInnerSe-lectQuery, TypeofJoin,
RightSideInnerSelectQuery)

4: Depending on the type of join, Parent and Child Table-
Names are assumed using Query Mapper.

5: if TypeofJoin is left or full then
6: CALL step 18 to make assumption
7: check assumption correctness using Query Mapper

Bhargavi K. et al, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,241-247

© 2010, IJARCS All Rights Reserved 244

8: if assumption = false then
9: CALL step 19
10: end if
11: else if TypeofJoin is right then
12: call step 19 to make assumption
13: check assumption correctness using Query Mapper
14: if assumption = false then
15: call step 18
16: end if
17: end if
18: Get inner select queries details and assign left part of

inner query to parent and right part of inner query to
child.

19: Get inner select queries details and assign right part of
inner query to parent and left part of inner query to
child

20: OuterSelectColumnsClause Variable is Splitted by ”,”
(comma) and each select column is taken into string
array.

21: for Each select column do
22: Extract ColumnName
23: if ColumnName belongs to ParentTable then
24: check ColumnName in ParentSelectColumnsClause

then Form the XPath
25: else if ColumnName belongs to ChildTable then
26: check ColumnName in ChildSelectColumnsClause then

Form the XPath
27: end if
28: end for
29: Pass the generated XPath to the XPath Processor,

which processes it and presents the corresponding
XML data as output to user.

30: End
As input to this component. XPathDocument object is

created, which is used to create XPath Navigator. Using
navigator, iterator will be created for selected set of nodes.
Using iterator looping is done on the selected set of nodes, to
present the XML data. The logic of XPath Processor is given
in algorithm 4.

VI. BENEFITS OF XML

It is platform and vendor independent.
Information coded in XML is easy to read and under-stand.
It is an extremely portable language to the extent that it can

be used on large networks with multiple platforms like the
internet, and it can also be used on handhelds, palmtops, and
PDAs.

Algorithm 2 Working of Query Analyzer

1: Begin
2: Inputs to this subroutine i)SelectQuery ii)Type-String

specifying which portion of the SelectQuery should be
returned. Possible values for Type are ”SelectColumn-
sClause” or ”TableName” or
”WhereConditionsClause”.

3: Extract the portion of the inner select query into
respective variables (i.e., SelectColumnsClause, Table
Name, Where-ConditionsClause)

Tree-Array[0] = ”select” keyword
Tree-Array[1] = SelectColumnsClause
Tree-Array[2] = ”from” keyword
Tree-Array[3] = TableName Tree-
Array[4] = ”where” keyword Tree-
Array[5] = WhereConditionsClause

4: Depending on the Type, requested portion of
SelectQuery is returned as output from the Subroutine.

5: if (Type == ”SelectColumnsClause”) then
Return Tree-Array[1];

6: else if (Type == ”TableName”)
then Return Tree-Array[3];

7: else if (Type == ”WhereConditionsClause”)
then Return Tree-Array[5];

8: end if
9: End

In XML there are no fixed set of tags and new tags can be
created as they need.

XML documents can be stored without schemas because
they contain meta data.

The look and feel of an XML document can be controlled
by XSL (EXtensible Stylesheet Language), allowing the look
of a document to be changed without modifying the content of
the document.

It supports multilingual documents and unicode.
The tree structure of XML documents allows documents to

be compared and aggregated element by element.
It can embed multiple data types (audio, video, java

applets, etc.).
Mapping existing data structure i.e., relational databases to

XML is simple.
It provides a one server view for distributed data.
It is being rapidly adopted by industries like IBM, Mi-

crosoft, NetScape, SAP, Software AG, DataChannel, etc.
It is currently the most sophisticated and popular format

for distributed data over World Wide Web.

VII. CONVERTER TOOL

We have developed a converter tool for converting the
SQL queries into XML. First the user will browse the XML
file and upload it, which is shown in Fig 4. When user clicks
upload button, contents of the XML file will be shown in table
form. This is shown in Fig 5. User enters the SQL query then
clicks the convert button, which is shown in Fig 6. On
conversion XPath will be displayed, as shown in Fig 7. An
additional option for verifying the XPath is also provided;
when the user

Algorithm 3 Working of Query Mapper

1: Begin
2: Include NameSpace ”System.Xml.XPath”
3: Create an XPathDocument object

XPathDocument xmlPathDoc = new XPathDocu-
ment(XMLFileName)
i.e., XMLFileName – Uploaded XML FileName Along
with its Directory Location Path

4: Create a navigator for the xpath document
i.e., XPathNavigator p-xPathNav = xmlPath-

Bhargavi K. et al, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,241-247

© 2010, IJARCS All Rights Reserved 245

Doc.CreateNavigator()
5: Initially make assumption as false
6: Move to the Root Node in XML

File i.e., p-
xPathNav.MoveToRoot()

7: Move to the first element
i.e., p-xPathNav.MoveToFirstChild()

8: Move to the next first element
i.e., p-xPathNav.MoveToFirstChild()

9: DO
10: if (p-xPathNav.Name == ParentTableName) then
11: if (p-xPathNav.MoveToFirstChild()) then
12: WHILE (p-xPathNav.MoveToNext())
13: if (p-xPathNav.Name == ChildTableName) then
14: Make assumption as true
15: end if
16: ENDWHILE
17: p-xPathNav.MoveToParent()
18: end if
19: end if
20: END DO WHILE (p-xPathNav.MoveToNext())
21: Return ”true” if assumption is valid otherwise return

”false”
22: End

Algorithm 4 Working of XPath Processor

1: Begin
2: Converter generated XPath or user specified XPath will

be given as input.
3: Include NameSpace System.Xml.XPath
4: Create an XPathDocument object

XPathDocument xmlPathDoc = new XPathDocu-
ment(XMLFileName)

5: Create a navigator for the xpath document
XPathNavigator p-xPathNav = xmlPath-
Doc.CreateNavigator()

6: Create a iterator for selected set of nodes
XPathNodeIterator xPathIt = p-
xPathNav.Select(XPath)

7: WHILE
8: XMLData = XMLData + xPathIt.Current.Name + ” = ”

+ xPathIt.Current.Value
9: END WHILE
10: Presenting the XML Data as output to user
11: End
12: Clicks on verify XPath, XML data corresponding to

generated XPath will be displayed, as shown in Fig 8.

Figure. 4. GUI of the converter

Figure. 5. XML file in table form

Bhargavi K. et al, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,241-247

© 2010, IJARCS All Rights Reserved 246

Figure. 6. Interface to enter SQL query

Figure. 7. Generated XPath

Figure. 8. Generated XML data

VIII. CONCLUSION

We have developed a converter tool for converting SQL
join queries into XML. The developed tool act as an automatic
converter of SQL queries into XML data. The converter
reduces the burden of learning syntax and semantics of
different kinds of languages on developers/users. Thus the
developed converter tool can be used in the organizations,
where operating with different query languages is an essential
requirement. As future work, we are planning to enhance the
features of the developed converter tool by considering other
complex SQL queries like nested left join, right join, full join,
etc.

IX. REFERENCES

[1] T. Bray, J. Paoli, C. Michael, F. Yergeau, E. Maler, ”XML
1.0 Specifica-tion”, W3C, 5th Edition, November 2008

[2] Pablo Berdaguer, Alcino Cunha, Hugo Pacheco, and Joost
Visser,” Coupled Schema Transformation and Data
Conversion for XML and SQL”, Work funded by Fundacao
para a Ciencia e a Tecnologia - POSI/ICHS/44304/2002.

[3] Bonifati A., Ceri S., ”Comparitive Analysis of Five XML
Query Lan-guages”, ACM SIGMOD Record 29(1), 2000

[4] http://www.mulberrytech.com

[5] J. Clark, and S. DeRose, ”XML Path Language (XPath)
version 1.0”’, W3C Recommendation, November 1999

Bhargavi K. et al, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,241-247

© 2010, IJARCS All Rights Reserved 247

[6] Matthias Nicola, Tim Kiefer, ”Generating SQL/XML Query
and Update Statements”, CIKM09, ACM-2009

[7] Tadeusz Pankowski, ”XML-SQL: An XML Query Language
Based on SQL and Path Tables”, EDBT 2002 Workshops,
2002

[8] Zhen Hua Liu, Sivasankaran Chandrasekar, Thomas Baby,
Hui J. Chang, ”Towards a Physical XML independent
XQuery/SQL/XML Engine”, PVLDB ’08, ACM-2008

[9] Xixuan Feng, Arun Kumar, Benjamin Recht, and christopher
Re, ”To-wards a Unified Architecture for in RDBMS
Analytics”, SIGMOID12, ACM-2012

[10] Youssef Bassil, ” A comparative study on the performance of
the Top DBMS systems, Journal of Computer Science and
Research (ICSCR), 2012

[11] Florescu D., D. Kossman, ”Storing and Querying XML Data
Using an RDBMS”, IEEE Data Engineering Bulletin, 1999

[12] Surajit Chaudhuri, Zhiyuan Chen, Kyuseok Shim, and
Yuqing, ”Storing XML (with XSD) in SQL databases:
Interplay of Logical and Physical Designs, IEEE Transactions
on Knowledge and Data Engineering, 2005

[13] Jayavel Shanmugasundaram, Rajasekar Krishnamurthy, Igor
Tatarinov, ” A General Technique for Querying XML

Documents using a Relational Database System”, SIGMOD
Record, Vol. 30, No. 3, September 2001

[14] Dongwon Lee, Murali Mani, and Wesley W. Chu, ” Nesting-
based Relational-to-XML Schema Translation”, 2001

[15] Manolescu I., D. Florescu, D.Kossman,” Pushing XML
queries inside Relational Databases, INRIA, Rapport de
recherche, 1-41 2001

[16] Vidhya P.M, Philip Samuel, ”Insert Queries in XML
database”, pages 9-13, IEEE-2010

[17] S. Jigyasu, et al., ”SQL to XQuery translation in the
aqualogic data services platform”, proc. 22nd International
Conference on Data Engi-neering, page 97, April 2006

[18] Vidhya P.M, Philip Samuel, ”Query Translation from SQL to
XPath”, pages 1749-1752, IEEE-2009

[19] Alan Halverson, Vanja Josifovski, Guy Lohman, Hamid
Pirahesh, and Mathias Morschel, ”ROX: Relational Over
XML”, pages 264-275, Pro-ceedings of the 30th VLDB
Conference, Toronto, Canada, 2004

[20] Dongwon Lee, Murali Mani, and Wesley W. Chu, ”Schema
Conversion Methods between XML and Relational Models”,
2002

