
Volume 4, No. 3, March 2013 (Special Issue)

International Journal of Advanced Research in Computer Science

CASE STUDY AND REPORT

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 10

ISSN No. 0976-5697

CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India

A Case Study: Code Befuddlement Proficiencies for Assisting Software Enigmas

Jitendra Sharma*
M.Tech. Scholar, Dept. of Computer Science & Engg.

Swami Keshvanand Institute of Technology
Jaipur, India

jitendra0511@gmail.com

Amit Solanki
M.Tech. Scholar, Dept. of Computer Science & Engg.

Swami Keshvanand Institute of Technology
Jaipur, India

amit.solanki48@gmail.com

Karishma Sharma
P.G.D.M. Scholar, Dept. of Decision Science (IT & Operations)

Shanti Business School, Ahmedabad, India
sharmakarishma91@gmail.com

Abstract: To prevent unauthorized reverse-engineering of programs and algorithms is a major problem for the software industry. To access
unauthorized such codes are easy to decompile, they increase the risks of malicious reverse engineering attacks. Reverse-engineers search
for security holes in the program to exploit or try to steal competitor’s vital algorithms. Obfuscating code is, therefore, also a compensating
control to manage the risks. It also provides several code obfuscation techniques that have been reviewed for technical protection of
software secrets. Code obfuscation is viable method for preventing reverse engineering. The obfuscator is based on the application of code
transformations, similar to compile optimizers. It also gives description about large number of such transformations and their classification.
The transformations are evaluated with respect to their potency, stealth, resilience and cost. As the internet evolves rapidly, software piracy
is rampant in the world; as a result software protection becomes a vital issue in computer industry. The code obfuscation can also use to
increase the level of software secrecy with integration of other technology. Programs known as obfuscators operate on source code, object
code, or both mainly for the purpose of deterring reverse engineering, disassembly, or de-compilation. Obfuscating code to prevent reverse
engineering is typically done to mange risks that stem from unauthorized access to source code.

Keywords: Code obfuscation, code tamper-proofing, obfuscator, functionality, efficiency, potency, resilience.

I. INTRODUCTION

As the interest evolves rapidly, software piracy is rampant
in the world; as a result, software protection becomes a
vital in current computer industry and a hot research topic
[1], [2], [3]. Software piracy has been causing enormous
losses for software vendors [4]. Given enough time and
resources, even a protected program can eventually be
reverse-engineered. As a result, having gained physical
access to the application, the reverse engineer can
decompile it (using decompiles/LEX/YACC) and then
analyze its data structure and control flow with the
program source code.
Over the past ten years, reverse engineering research has
produced a number of capabilities for analyzing code,
including subsystem decomposition, concept synthesis ,
design, program and change pattern matching , program
slicing and dicing, analysis of static and dynamic
dependencies, object-oriented metrics , and software
exploration and visualization. In general, these analyses
have been successful at treating the software at the
syntactic level to address specific information needs and
to span relatively narrow information gaps [5]. This can
either be done manually or with the aid of reverse
engineering tools. Several research issues, formulated as
questions, need to be addressed to enable this capability
for “continuous program understanding”.

a. What are the long-term information needs of a
software system?

b. What patterns of change do software systems
undergo?

c. What mappings need to be explicitly recorded?
d. What kind of software repository could represent

the required information?
e. What are the requirements of tool support to

produce and manipulate the mappings?
f. How can this support coexist with traditional,

code dominated tools, users, and processes?
In addition to an emphasis on “continuous program
understanding,” it is important to focus efforts on a better
definition of the reverse engineering process. Reverse
engineering has typically been performed in an ad hoc
manner.
To discourage reverse-engineering, developers use a
variety of static software protections to obfuscate
programs [6]. Three techniques have been used for
software copyright protection [7][8], code obfuscation,
software watermarking and code tamper-proofing.
Obfuscation code (or beclouding) is the hiding of
intended meaning in communication, making
communication confusing, willfully ambiguous, and
harder to interpret. It is the process of transforming byte
code to al less human-readable format; making it hard to
be decompiled or analyzed even it is decompiled. It

Jitendra Sharma et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue March, 2013, 10-15

© 2010, IJARCS All Rights Reserved 11 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India

includes stripping all unnecessary information, local
variable names, line numbers and source file names used
by debuggers from the classes, and renaming classes,
interface fields and method identifiers to make them
meaningless. Software watermarking involves embedding
a unique identifier within a piece of software, to
discourage software theft.[4] Watermarking does not
prevent theft but instead discourages software thieves by
providing a means to identify the owner of a piece of
software and/or the origin of the stolen software. It can
then be extracted by an extractor or verified by a
recognizer to prove ownership of software.
The former extracts the original watermark, while the
latter merely confirms the presence of a watermark.
Tamper-proof mechanism that is embedded in the
dynamic data structures of a program. Tamper-proofing
method is based on transforming numeric or non-numeric
constant values in the text of the watermarked program
into function calls whose value depends on the watermark
data structure. Under reasonable assumptions about the
knowledge and re-sources of an attacker, we argue that no
attacker can be certain that they have altered our tamper
proofed watermark unless they take a risk of acting
program correctness in some way that may be difficult to
detect [7] [8].
Software protection is a promising technology to cope
with various malicious or illegal accesses to mission
critical servers. Code obfuscation has been proposed as
the solution to problems such as protection of transient
secrets in programs, protection of algorithms, license
management for software, protection of digital
watermarks in programs, software based tamper resistance
and protection of mobile agents [9][10].
The goal of software protection and obfuscation is to
make the reverse engineering process more costly than
developing the program separately. The developers create
new protections which reverse engineers create new tools
to break.

II. CODE OBFUSCATION

Obfuscation means “to make difficult to perceive or
understand” or ‘making something less clear and harder to
understand’. Code obfuscation in programming world
means making code harder to understand or read,
generally for privacy or security purposes. Code
obfuscation makes it harder for a security analyst to
understand the malicious payload of a program. In most
cases an analyst needs to study the program at the
machine code level, with little or no extra information
available, apart from his experience.Security through
obscurity has long been viewed with disregard in the
security community. However, there are applications
where obscurity can provide a higher level of protection
to its source code.In computing, obfuscation is used to
transform the code into a form that is functionally
identical to the original code but is much more difficult to
understand and reverse engineer using tools.
We are not assuming here that obfuscation will make the
code impossible to reverse engineer. The aim is to

increase the cost of reverse engineering the code, so that it
becomes infeasible. There should be a significant
difference between the time needed to obfuscate and the
time needed to deobfuscate.

Figure 1. Obfuscation Process

Obfuscation is a process that is applied to compiled .NET
assemblies, not source code. An obfuscator never reads or
alters the source code. Figure 1. shows the flow of the
obfuscation process. The output of the obfuscator is
another set of assemblies, functionally equivalent to the
input assemblies, yet transformed in ways that hinder
reverse engineering.
A concise formal description of code obfuscation is
described below [11] and figure represents the complete
functional block diagram for code obfuscation.

Figure 2. Block diagram of Code obfuscation

Given a program P and a set of obfuscation
transformations T, generate a program P’ such that:[4]

a) P’ retains the functionality of P,
b) P’ is difficult to reverse engineer and
c) P’ performs comparably to P (reduced obfuscation

cost)
An obfuscator O is an efficient, probabilistic compiler that
transforms a program P into a new program P’ = O (P)
such that:

©

T

A
o
b
s
m
c

T
c

Jitendra

© 2010, IJARCS A

a. Functiona
the sam
behavior)
the funct
program
compute t

b. Efficiency
much less
willing to
program,
time, say
program.

Fig

The obfuscator
(a). Fun
(b). Incr

requ
cons

(c). Obf
An obfuscator u
original source
be resilient. Af
segment Sj and
must be prohib
can be generate

III. ASSES

The quality of a
combination of
a. Potency:

transform
Software
complexit
of predica
nesting le
design is
parameter
it.[4]

b. Resilience
transform
attacks. It
to create
required b
resilience
undone by
obfuscatio
code form

c. Stealth: S
code blen
transform
the rest o
deobfusca

a Sharma et al, In

All Rights Reserve

ality: The obfu
e functionali
as the input p

tionality requ
and the ob

the same progr
y: The obfusc
s efficient than
o allow some
but it shouldn

y, exponential

gure 3. Obfuscator

function has th
nctionality pres
rease of cod
uirements are
stant factor)
fuscated progra
use transforma
code. Obfusca

fter applying t
d generating an
bitively hard to
e Sj Sj

’.

SSING QUAL

an obfuscation
f its potency, re

Potency def
ed code is mo

complexity
ty measures fo
ates it contains,
evels, etc. Whi

to minimize
rs, the goal of

e: Resilience
ed code can re
t is a combinat

a deobfuscato
by the deobfus
is a one-way t

y a deobfuscat
on removes in

matting.
Stealth define
nds with the r
ation introduce
of the program
ator to spot, bu

nternational Jour

d CONFEREN
“A

2nd SIG-WNs
IEEE Stud

uscated progra
ity (that is,
program. For s
uirement is th
bfuscated pro
ram.
cated program
n the input pro
overhead in t

n't be the case
lly slower th

r Translator Progra

hree propertied
erving
de size, tim
e restricted

am is not under
ations (T) for o
ation transform
transformation
n obfuscated s
 build an autom

LITY PARAM

n method is dete
esilience, stealt
fines to wha
ore obscure tha

metrics de
or software, su
, depth of its in
le the goal of
complexity b

f obfuscation i

e defines ho
esist automated
ion of the prog
or and the tim
scator. The hig
transformation
tor. An examp
nformation su

s how well t
rest of the pr
es code that st

m, it may be
ut it can easily b

rnal of Advanced

 NCE PAPER
Advance Computing

, Div IV & Udaipur Ch
dent Chapter Geetanjal

am should have
 input/output

such programs
hat the input
ogram should

m shouldn't be
ogram. We are
the obfuscated
that it runs in

han the input

am

d properties:

me & space
(usually by

rstandable.
obfuscating the
mations need to

Ti to program
tatement Sj

’, it
mated tool that

METERS

ermined by the
th and cost.
at degree the
an the original
efine various
uch as number
nheritance tree
good software

based on these
is to maximize

ow well the
d deobfuscation
grammer effort
me and space

ghest degree of
that cannot be

ple is when the
uch as source

the obfuscated
rogram. If the
tands out from
difficult for a

be spotted by a

Research in Com

g and Creating Entr

On 19-20 Feb 2013
Organized by

hapter , CSI , IEEE Co
li Institute of Technica

e
t
,
t
d

e
e
d
n
t

e
y

e
o

m
t
t

e

e
.
s
r
,
e
e
e

e
n
t
e
f
e
e
e

d
e

m
a
a

d.

I

Obfu
infor
targe
targe
Let’s
read
huma
true n
First,
confu
consi
into t
of na

A re
this:

We c
dime

Or fl

Each
interp
the c
engin
the o
comp
becau
struc
Anot
elem

mputer Science, 4

 II Internation
epreneurs (ACCE2
3

omputer Society Chapte
al Studies, Udaipur, Raj

reverse engine
stealthy in one
Cost: Cost is
in the obfusc
code. A tran
is free. Cost is

IV. CODE OB

uscation metho
rmation they
et the lexical s
et the data struc
s look at the di

and make sen
an being or a
nature and purp
, an array cou
use the reade
ider an array w
two arrays, it w

ames.[4][5]

lated idea is t

could even fold
ension.

latten an array

Figure 4. Arra

h of the abov
pret. Observe t

complexity of t
neer, i.e. incre
other hand, arra
plexity. But th
use they int

cture from the o
ther method

ments within th

(3) Special Issue

 nal Conference on
013)”

er India Council ,
jasthan, India

eer. Stealth is c
e program may
the execution
cated code co
nsformation w
s also context-s

BFUSCATION

ods are class
target. Some
structure of th
ctures or the co
ifferent ways to
nse of. The o

deobfuscator
pose of the arr

uld be split int
er about its
which holds a li
will be interpre

to merge multi

d an array, i.e.

, i.e. reduce the

ay Structure Using

ve makes the
that array split
the code. They
ease the poten
ay merging an

hey increase the
troduce bogus
original progra
for obfuscatin
e array. A ma

March, 2013, 10-

context-sensiti
y not be in anot
time and spac

ompared to th
with no cost
sensitive.[4]

N TECHNIQU

ified dependin
simple trans

he program wh
ontrol flow.
o make arrays

objective is to
from understa

ay.
to multiple sub
structure. For
ist of names: if
eted as two dif

iple arrays into

increase the nu

e number of di

g Merging Techniq

array more d
tting and foldin
y thus confuse t
ncy of the tran
nd flattening de
e obscurity of
s structure o
am.
ng arrays is
apping functio

-15

 12

ve; what is
ther.
e overhead
he original

associated

UES

ng on the
sformations
hile others

difficult to
confuse a

anding the

b-arrays to
r example,
f we split it
fferent lists

o one, like

umber of

imensions.

que

difficult to
ng increase
the reverse

nsform. On
ecrease the
a program

or remove

to reorder
on f can be

Jitendra Sharma et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue March, 2013, 10-15

© 2010, IJARCS All Rights Reserved 13 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India

defined such that the ith element in the original array is
relocated to the jth position where j = f(i) . This function
can be used for the mapping of elements in the original
and reordered array. Reverse engineers can figure out
what’s going on here, so this has low potency and
resilience; but these are also free since there is no change
in memory or execution time associated with shuffling the
positions of array elements.[4][5]
We have looked at different methods to make code so
complex with reverse engineering. Let’s quickly recap
how effective each of these techniques is in terms of
Potency, Resilience and Cost.

Table I Various Transform Methods

Transform Potency Resilience Cost

Split Array Varies Weak Free

Merge Array Varies Weak Free

Flatten Array Varies Weak Free

Fold Array Varies Weak Free

Reorder Array Low Weak Cheap

These parameters were potency — the ability to confuse a
human reverse engineer, resilience — the ability to fool a
deobfuscator, and cost — the increase in execution time
and memory required in the obfuscated code. Data
obfuscation does not make your programs “fool-proof”
against reverse engineering; but it adds a second level of
defense.
Obfuscation methods are further classified based on the
kind of operation they perform on the targeted
information. Some methods manipulate the aggregation of
control or data, while others affect the ordering. Code
obfuscation can be achieved through one or more of the
following methods, the different obfuscation methods are:

A. Binary Structure Obfuscation - A source code
obfuscator accepts a program source file, and
generates another functionally equivalent source file,
which is much harder to understand or reverse-
engineer. This is useful for technical protection of
intellectual property when source code must be
delivered for public execution purposes.

B. Data Obfuscation - This is aimed at obscuring data
and data structures. Techniques used in this method
range from splitting variables, promoting scalars to
objects, converting static data to procedure, change the
encoding, changing the variable lifetime etc. It
includes the following transformations:

a. Storage and Encoding Transformations –
Obfuscating storage transformations attempt to
choose unnatural storage classes for dynamic as well
as static data. Similarly, encoding transformations
attempt to choose unnatural encodings for common
data types.

b. Splitting and Folding Variables– Boolean variables
and other variables of restricted range can be split
into two or more variables. To allow a variable V of

type T to be split into two variables p and q of type
U require us to provide three pieces of information
[12]:

(a). A function f (p, q) that maps the value of p and q
into the corresponding value of V,

(b). A function g (V) that maps the value of V into
the corresponding values of p and q, and

(c). New operations (corresponding to the primitive
operations on value of type T) cast in terms of
operations on p and q of type U.

c. Promote Variables – There are a number of simple
transformations that promote variables from a
specialized storage class to a more general class.
Their potency and resilience are generally low, but
used in conjunction with other transformations that
can be quite effective. For example, in java, an
integer variable can be promoted to an integer
object. The same is true for the other scalar types
which all have corresponding “packaged” classes.
Since java supports garbage collection, the objects
will be automatically removed when they are no
longer referenced.

d. Change Encoding – The easiest method to remove
ASCII strings from a binary is to encrypt or encode
them. A simple character by character XOR can
obfuscate the strings to make them unreadable.

e. Ordering Transformations – The ordering
transformations can also play a important role in
data obfuscation, it is used to randomizing the order
in which computations are performed. Randomize
the order of methods and instance variables within
classes and formal parameters within methods. The
potency of these transformations is low and the
resilience is one-way.

C. Control Flow Obfuscation - This aims at changing the
control hierarchy with logic preservation. Here false
conditional statements and other misleading constructs
are introduced to confuse decompilers, but the logic of
the code remains intact. Control flow obfuscation
introduces false conditional statements and other
misleading constructs in order to confuse and break
decompilers. Instead of adding code constructs,
Dotfuscator works by destroying the code patterns that
decompilers use to recreate source code. [7] The end
result is code that is semantically equivalent to the
original but contains no clues as to how the code was
originally written. Even if highly advanced
decompilers come to pass, their output will be
guesswork.

Control flow obfuscating transformations are applied,
such as opaque predicates, insert dead or irrelevant code,
extend loop conditions, add redundant operands,
parallelize code, remove library calls and programming
idioms, table interpretation, loop transformations, clone
methods etc. in which some of are on the base of
aggregation, computation and ordering transformation.
A predicate is opaque if its value is known a priori to the
obfuscation, but this value is difficult for the deobfuscator
to deduce. Given such opaque predicates, it is possible to

Jitendra Sharma et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue March, 2013, 10-15

© 2010, IJARCS All Rights Reserved 14 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India

construct transformations that break up the flow-of-
control of the given program by inserting dead or buggy
code in branching guided by opaque predicates. Figure 5.
Illustrate an example of how the insertion of an opaque
predicate PT can be used in order to confuse the control
flow of a given program P.

Figure 5. Control Flow Obfuscation

a. Aggregation obfuscation: Alters how statements are
grouped together. An example is inlining, which
means replacing a function call by the body of the
function.

b. Ordering obfuscation: Alters the order in which
statements are executed. An example is reversing a
loop so that it iterates backwards or change the
structure of the arrays.

c. Computation obfuscation: Alters the control flow in
a program by hiding the true control-flow behind
irrelevant statements that do not contribute to the
actual computations, for example, by inserting object
level code that has no source code equivalent, or by
inserting new redundant code or code that will never
be executed (dead code and null operations). [9]

D. Preventive Obfuscation– Preventive transformations
are quite different from control and data
transformations. The main goal of this method is not
to obscure the program code but to make it more
difficult to break for the deobfuscators. Instead of
this design code to make known automatic
deobfuscation techniques are difficult (inherent
preventive transformations), and to explore known
problem in current deobfuscators or decompilers
(targeted preventive transformations) [12]

a. Targeted preventive transformations: It is focus
on protection against decompilers and reverse
engineering methods. Renaming metadata to
gibberish or less obvious identifiers is one such
technique and it tries to make automatic
deobfuscation techniques more difficult. In a
targeted preventive transformation, consider the
Hose Mocha program. It was designed specifically
to explore a weakness in the Mocha decompiler.
Hose Mocha inserts extra instructions after every

return statement in every method in the source
program. This transformation has no effect on the
behavior of the application, but it is enough to make
Mocha crash.

b. Inherent preventive transformations: Tries to
exploit known weaknesses in deobfuscator. It has
low potency, high resilience and an ability to boost
the resilience of other transformations. For example,
assume that a for-loop has been reordered to run
backwards, naturally, there is nothing stopping a
deobfuscator from performing the same analysis and
then returning the loop to forward execution. To
prevent this, add a bogus data dependency to the
reversed loop. The resilience this inherent preventive
transformation adds to the loop reordering
transformation depends on the complexity of the
bogus dependency.

There are many commercial tools and some open source
tools available in the market for achieving code
obfuscation. For example, Oracle provides a way for
shipping PL/SQL code, using the wrap utility that ships
with the database. It will encrypt the source code into a
format that cannot be reverse-engineered or edited. Code
obfuscation introduces greater overhead. Unless the
transform is optimized, obfuscated code runs slower in
general than normal source code and wrapped package
can be larger in size too. These however may be the price
to be paid for enhanced protection of the source code.

V. CONCLUSION

Obfuscated code is source code or intermediate language
that is very hard to read and understand, often
intentionally. However, we need to compromise the
software engineering principles. The code obfuscation can
also use to increase the level of software secrecy with the
integration of other technology. Programs known as
obfuscators operate on source code, object code, or both
mainly for the purpose of deterring reverse engineering,
disassembly, or decompilation. Obfuscated code to
prevent reverse engineering is typically done to manage
risks that stem from unauthorized access to source code.

VI. REFERENCES

[1] L. Ertual, S.Venkatesh, “Novel on obfuscation
algorithmfor software security”, International
Conference on Software Engineering Research and
Practice,2005,pp.209-215

[2] Taha H.A., Optimizing Techniques, II edition.
[3] Stephen Drape,”An obfuscation for Binary Trees”,

IEEE, 2006.
[4] Ramakrishnan Srikant “Protecting Software Secrets

using reverse engineering”.
[5] P.Nixon,”Securing Java based mobile Agents through

Byte Code Obfuscation”, IEEE, 2006, pp 305-308.
[6] Benjamin Lynn,”Positive results and Techniques for

Obfuscation” IEEE 2004, pp 123-127.

Jitendra Sharma et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue March, 2013, 10-15

© 2010, IJARCS All Rights Reserved 15 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India

[7] Harn L. (1993). Self Protecting mobile agents,
Proceeding of Workshop, Chung Cheng Institute of
technology, ROC, p.p. 61 – 73.

[8] Syed Wahar Shah, Group oriented,”Static Analysis
on Reverse Engineering”, IEEE, Proc – computer
digit tech - 141(5), p.p. 307-313.

[9] Hellman M. E. (1979). The method of software
security, Scientific American -241, p.p. 130-139.

[10] D.Low, “A Taxonomy of Obfuscating
transformations”, American Mathematical Monthly –
36,p.p.15-30.

[11] Hwang M., Lin I. and Lie E.J. (2000). “A secure
nonrepudiable tool for software protection research
Scheme”.with Known Signers, International Journal
of Informatica - 11(2), p.p.1- 8.

[12] Chen C.C. (2001). Copyright Protection of J2EE web
applications, IEEE Taipei, p.p. 26 – 28.

