
Volume 3, No. 4, July- August 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 84

ISSN No. 0976-5697

Component evaluation and component interface identification from object oriented
System

Shivani Budhkar*
Asst. Prof. MCA Department

P.E.S. Modern College of Engineering
Pune, India

shivanibudhkar@gmail.com

Dr.Arpita Gopal
Director, MCA

Sinhgad Institute of Business Administration and Research,
Pune, India

arpita.gopal@gmail.com
Abstract: Component based technology has proven to be more reusable and suitable for new computing environments than object oriented
technology. Most of the existing object- oriented systems do not have reliable software architecture as system evolves. As High level software
architecture is useful in all phases of software life cycle, it is important to reengineer object oriented system and recover component based
architecture. For this purpose, we have developed a process and a tool which creates components from existing object oriented system. We have
defined three steps to recover component based architecture .In this paper we will demonstrate how to extract interfaces among components and
component evaluation while recovering component based architecture. We have evaluated feasibility of this tool on Java software.
Keywords: Component interface, component, Component Evaluation, coupling, cohesion

I. INTRODUCTION

Object oriented development has not provided extensive
reuse. Component-based software architecture is a high
level abstraction of a system. It has architectural elements:
Components - which provide functionality, Connectors
which describe interactions and Configuration which
represents the topology of connections between components.
This abstraction provides major advantages in the software
life cycle like better abstraction capabilities, better
flexibility for evolution and maintenance, better reusability
as compared to object oriented paradigm. Hence, it is
important to extract component based architecture from an
object oriented system. Such architectures give better
understanding of legacy object oriented code as stated in [1]
and identified components can be packaged, integrated into
component libraries for further reuse in other new
applications [2].Similarly component interfaces can be
created.

Component based software Engineering is being
evolved; hence some characters of component paradigm are
emerged. Component is cohesive to provide good services to
user. Components have well defined interfaces. Size of
components should be adequate for easy deployment and
maintenance. Reusable components can be used in many
different systems [6].

Using dependencies in existing object oriented system
like composition, inheritance, method coupling etc., we
derived input for agglomerative clustering algorithm, which
creates components and then interface details are generated.
We have developed a tool for identifying components and
interfaces among components. We have evaluated our
approach on small java program. Wherein four components
were identified and interface details are shown.

The rest of the paper is organized as follows: In section
II we will discuss about the tool and overview process for

identifying components, interface generation and component
evaluation. Case study and results from our tool are
provided in section III. Section IV gives related work.
Section V concludes and proposes idea for future.

II. OVERVIEW OF TOOL AND PROCESS

We have identified three steps to produce a component
based architectural view from an object-oriented application
in our approach –
i) Identify dependencies in existing object oriented

system
ii) Identify components
iii) Identify the interfaces to bind them together.

Following “Fig.1” shows overall approach for
producing component based architecture.

Figure1. Tool and Process

a. Identify dependencies in existing object oriented
system: Our process is based on the identification of
source code entities and the relationship between them.
The list of possible relationships between object

Shivani Budhkar et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012,84-90

© 2010, IJARCS All Rights Reserved 85

oriented systems includes inheritance, composition,
invocation relationship etc. We have extracted
inheritance coupling, composition coupling, method
coupling and integrated coupling through our tool [3].

b. Identify components: - A component is group of
classes collaborating to provide a function of
application [4].We need to group the classes based on
similarity to generate component based system from
existing object oriented system. Each of the group
becomes component. A hierarchical clustering
algorithm allows grouping of classes of the application.
We have identified components from clustering level
through our tool [5].

c. Identify interfaces: - Identified group of classes
working together will form components. We also need
to identify interfaces to describe how they bind
together.

 A tool is being developed tool which will accept the
user input of an existing java source code and then
generates dependencies. The tool analyzes data represented
through these dependencies. These are further taken as an
input to Agglomerative clustering algorithm which creates
components for component based system. Using these
components, interface details are identified. Identified
components are evaluated using component cohesion,
component coupling, and component size metrics for quality
of components. Here in this paper we focus on identifying
interfaces and component evaluation.

A. Identify interfaces:
Component based system consists of components

and interfaces. Component interfaces are the means
by which components connect with each other. A
component interface specifies the service that the
component provides and requires. Among all of the
methods in the component, only public methods used
from outside provide services to other components or
classes. Therefore we create a provide -interface that
includes the public methods that exists in any of the
component’s classes and which are used by the
outside of that component. Require-interface is the
union set of every method in other components that is
called by the component. To reduce cyclic
dependency among components, we group these
interfaces as packages. Our process of identifying
interfaces and component evaluation is shown in
below “fig. 2”.

Fig.ure 2: Process for identify interfaces and component evaluation

B. Component Evaluation:
The component evaluation of step 3 above accepts the

results produced through clustering i.e. components created,
interfaces details created (as shown in figure.3 - figure.6) as
input and evaluates the quality of identified components.
There are several evaluation criterions proposed to qualify
clustering results. The basic quality metrics to evaluate
software system are coupling and cohesion, which can cause
serious impact on maintenance, evolution, and reuse. There
should also be appropriate number of implementation
classes in well organized components. Evaluation criteria
for components used by us are size, coupling and cohesion.

a. Size:
In [7] Cui and Chae proposed size as evaluation criteria

to show well organized components with appropriate
number of implementation classes. So using size we
evaluate clustering results. According to them sum of ratios
of single class component, classes in largest component and
other intermediate components should be 100%.

Ratio of Single class component=Number of Single class
component/Total number of classes

Ratio of classes in largest component=Number of classes
in the largest component/Total number of classes

Ratio of other intermediate components = Number of
classes in intermediate components /Total number of classes

b. Coupling:
In component based system coupling shows how tightly

one component is interacting with other components in the
system. Coupled Component Ratio (CCR) is one of the

Shivani Budhkar et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012,84-90

© 2010, IJARCS All Rights Reserved 86

metric for evaluating component coupling proposed by Cui
and Chae[7].According to them two components are said to
be coupled if there is connection between them and CCR is
defined as Number of components coupled with particular
component/(Total no. of components in system – 1). The
CCR value of component lies between 0 and 1.Smaller the
CCR value better the component is.CCR value 1 indicates
that component is coupled with all other components in
system.CCR value 0 indicates that component is entirely
independent.

c. Cohesion:
Cohesion in component based system is how tightly

classes are coupled within the component. Cohesion metric
is used to measure quality of components for reusability and
maintainability. We propose Component Cohesion Metric
(CCM) as Number of component’s self couplings/Total
number of couplings of that component. Where total number
of couplings of component = self coupling + coupling with
other components within system. The value of CCM lies
between 0 and 1. A higher CCM value indicates more
similar behavior is grouped together i.e. more tightly
coupled classes are grouped together.CCM value 1 indicates
high cohesion within component.

III. RESULT AND CASE STUDY

We used small java software “Arithmetic24 Game‟,
which is developed in Java by Huahai Yang [8] as a case
study. It is a simulation of popular traditional card game.

We have developed tool for migration from object
oriented system to component based system. Our tool
accepts Java source code as input .The tool parses java code
and shows inheritance coupling, method coupling and
composition coupling and integrated coupling. Results
showed most of the classes are placed in proper coupling
tables [3] and four components are created and classes are
kept in appropriate components [5]. Further “fig..3” to

“fig.6” shows interface details created for these components.
Using these details, interfaces among components can be
created. “Table-I” show candidate components created along
with respective classes for our case study “Arithmetic24
Game”. Using interface details component diagram with
dependencies is shown in “fig.7a”. Components are
evaluated for quality using metrics presented in sectionB.1
to B.3 and the results are shown in “fig.8” i.e. from “fig.3”
and “Table I” largest components are component0 and
component3 consisting of 8 classes each. So Ratio of classes
in largest component0 =8/20 = 40% and Ratio of classes in
largest component3 =8/20 = 40%. There is a single class
component, component2, so Ratio of Single class
component=1/20 = 5%.There is one intermediate
component, component1, so Ratio of other intermediate
components = 3/20 = 15%. Thus sum of these three ratios is
100%; it indicates all the classes in the software have been
considered by three ratios. Also Result screen “fig.8” shows
evaluation of components by coupling metric. Coupled
component Ratio (CCR) for Component0 = 0.66, CCR for
Component1=0.33, CCR for Component2=0.66, CCR for
Component3=0.66.Agian from result screen “fig.8” shows
evaluation of components by Component Cohesion Metric
(CCM). CCM for Component0=0.6, CCM for
Component1=0.25, CCM for Component2=0, CCM for
Component3=0.25.

“Fig.7a” shows dependencies among components
created through our tool. Component dependencies must be
decreased. We decrease dependency by managing interfaces
into another package. So using interface package,
components with cyclic dependency can be removed, as
shown in “Fig.7b”.

We can create component packages and interface
packages which will play role of required interface and
provided interface. Deployment of components and
interfaces will depend upon the framework you use.

We can conclude that our tool gives optimum results for
component identification and interface generation.

Table I. Candidate component table for “Arithmetic24” game

Candidate
Compone
nt

Classes

Component0 Arithmetic24,DraggingArea,DraggingImage,ObservableInteger,PlayingStatus,ScoreKeeper,SynchronizedVector,Type

Component1 CardSlot, DraggingSlot, SoundLoader

Component2 SoundList

Component3 Card, CardDeck, Clock, Expression, IllegalExpressionException, Operator, OperatorSlot, Solution

Shivani Budhkar et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012,84-90

© 2010, IJARCS All Rights Reserved 87

Figure 3. Components created and interface details among components

Figure 4. Remaining Interface details among components -I

Shivani Budhkar et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012,84-90

© 2010, IJARCS All Rights Reserved 88

Figure.-5 Remaining Interface details among components-II

Figure.- 6 Remaining interface details among components – III

Shivani Budhkar et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012,84-90

© 2010, IJARCS All Rights Reserved 89

Figure.-7a UML Component Diagram for Arithmetic24 game

Figure.-7b UML Components with interfaces as packages for Arithmetic24 game

Figure.-8 component evaluation by using component size, component coupling and component cohesion metrics

IV. RELATED WORK

Chardigny,et al proposed ROMANTIC [9]
approach which is quasi-automatic approach to extract
component based software Architecture. Medvidovic

[1] proposed Focus, which regroups classes and maps
the extracted entities to a conceptual architecture
obtained from an architectural style according to the
human expertise. Jong Kook Lee et.al proposed a
component identification method that considers class
cohesion, class interaction coupling, and class static

Shivani Budhkar et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012,84-90

© 2010, IJARCS All Rights Reserved 90

coupling [6]. Similar to our work Alae- Eddin et al
recovered component based Architecture via relational
concept analysis [10]. Using Annealing simulation
algorithm and concept of lattice Eunjoo Lee et.al
presented a reengineering process of migrating existing
object oriented system into components that are domain
specific functional units [11]. Suk Kyung Shin and Soo
Dong Kim proposed techniques for transforming
Object Oriented Design into Component Based Design
using Object-Z specification. Also proposes set of rules
for transforming Object Oriented Design to Component
Based Design [12]. Simon Allier et.al developed
automatic approach for migration from object oriented
to component based system which uses Execution
traces to extract data and uses clustering algorithm for
component identification [4].

In our approach and tool automation level is higher which
decreases the need of human expertise which is expensive and
is not always available.

V. CONCLUSION AND FUTURE WORK

In this study, we have developed a tool which
accepts object oriented java source code and migrates
into component based system. The tool identifies
different kind of dependencies among the classes then
uses clustering algorithm to identify components.
Interfaces details of the extracted components are
identified by tool using which, interface packages can
be defined and components are evaluated based on
component quality metrics size, component coupling
and component cohesion. We used this tool for
“Arithmetic24” game written in Java and showed it is
applicable to object oriented system. The tool has
successfully extracted four components and interface
details. Thus we have satisfactory results.

Our future work will focus on evaluation of larger and
more complex programs by the tool to show how methodology
scales to deal with real industrial scale.

VI. REFERENCES

[1] Medvidovic, N., Jakobac V, “Using software evolution to
focus architectural recovery”, Automated Software Eng.
13(2), 225–256 (2006)

[2] Hironori Washizaki and Yoshiaki Fukazawa, “A technique
for automatic component extraction from object oriented

programs by refactoring”, Sci. Comput. Program,56(1-2):99-
116,2005

[3] Shivani Budhkar and Dr.Arpita gopal, “Component Based
Architecture recovery from object oriented system using
existing dependencies”, International Journal of
Computational Intelligence Techniques , Volume 3, Issue 1,
2012, pp.-56-59.

[4] Simon Allier Salah Sadou,Houari Sahraoui and Regis
Fleurquin, “From Object-Oriented Applications to
Component–Oriented Applications via Component oriented
Architecture”, Ninth Working IEEE/IFIP Conference on
Software Architecture,2011 pg- 214-223

[5] Shivani Budhkar and Dr. Arpita Gopal, “Component
identification from existing object oriented system using
Hierarchical clustering”, IOSR Journal of Engineering, May.
2012, Vol. 2(5) pp: 1064-1068

[6] Jong Kook Lee, Seung Jae Jung, Soo Dong Kim, Woo Hyun
jang, Dong Han Ham, “ Component Identification Method
with Coupling and Cohesion” ,Eighth Asia-Pacific Software
Engineering Conference(APSEC’01) 1530-1362/01

[7] Jian Feng Cui,Heung Seok Chae, “Applying agglomerative
hierarchical clustering algorithms to component identification
for legacy systems”, Information and Software technology
53(2011)601-614

[8] http://javaboutique.internet.com/arith24/

[9] Chardigny, S., Seriai, A., Oussalah, M., Tamzalit, D,”
Extraction of component-based architecture from object-
oriented systems”, In: WICSA. pp. 285–288. IEEE Computer
Society(2008)

[10] Alae-Eddine El Hamdouni, A.Djamel Seriai1, and Marianne
Huchard, ”Component based architecture recovery From OO
systems via relational Concept Analysis” ,CLA10 7th
International Conference on Concept Lattices and Their
Applications, Sevilla : Spain (2010)pg- 259-270

[11] Eunjoo Lee,Byungjeong Lee,Woochang Shin, Chisu,”A
reverse engineering Process for Migrating from object
oriented Legacy system to a component based system” ,In
proceedings of 27th Annual International Computer Software
and Applications Conference 2003, 0730-3157/03

[12] Suk Kyung Shin and Soo Dong Kim,” A Method to
Transform Object Oriented Design into Component-Based
Design using Object-Z”, The third ACIS international
conference on Software Engineering Research, Management
and Applications (SERA’05) pg- 274 - 281

	INTRODUCTION
	OVERVIEW OF TOOL AND PROCESS
	Identify interfaces:
	Component Evaluation:
	The component evaluation of step 3 above accepts the results produced through clustering i.e. components created, interfaces details created (as shown in figure.3 - figure.6) as input and evaluates the quality of identified components. There are sever...

	RESULT AND CASE STUDY
	RELATED WORK
	CONCLUSION AND FUTURE WORK
	REFERENCES

