
Volume 3, No. 1, Jan-Feb 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 407

ISSN No. 0976-5697

Taxonomy of Scheduling in Grid Environment

Arun Baruah
133/4, 4th Crs, Munekolala

Marathalli, Bangalore India

arunbaruah@gmail.com

Abstract: Grid computing is a high performance computing environment consisting of thousands of computers, sensors and other resources

which are geographically distributed or globally located across multiple administrative domains and used to solve large scale computational
demands. In the grid environment, users can access the resources transparently without knowing where they are physically located. To achieve
the promising potentials of computational girds, job scheduling is an important issue to be considered. Scheduling is very complicated due to the
unique characteristics of the grids. Scheduling using general techniques in grids could not yield better optimization result. Meta heuristic
techniques are more result oriented in scheduling of computational grids. This paper focuses on the taxonomy of Grid scheduling.

Keywords: Scheduling, grids, Meta heuristic

I. INTRODUCTION

Grids [1] have emerged as a global cyber-infrastructure

for the next generation of e-science applications by

integrating large-scale, distributed and heterogeneous

resources. Scientific communities, such as high-energy

physics, gravitational-wave physics, geophysics, astronomy

and bioinformatics, are utilizing Grids to share, manage and

process large data sets. To achieve the potentials of

computational grids, job scheduling is an important issue to
be considered. The first paper on the critical path was

published by Kelley Walker in March 1959 who defined the

science of scheduling using critical path analysis. The

evolution of scheduling was then applied in the development

of computers, earlier in mainframes and latter 1980’s the

personal computers and now to the clusters and the grids.

The grid applications which contain many tasks that may

take several days or weeks to complete whose completion

time is affected by task scheduling. The delay in single tasks

can affect the completion time of the entire application [2].

In order to support complex scientific experiments,
distributed resources such as computational devices, data,

applications needs to be orchestrated while managing the

application workflow operations within Grid environments.

The main goal of scheduling is to minimize the job

completion time and wastage of CPU cycles [3] but

scheduling jobs in heterogeneous grid environment is

different compared to parallel architectures. Scheduling is

highly complicated by the distributed ownership of the grid

resources as consumers of providers of the grid resources

have their own access policy, scheduling strategy and

optimization objectives [4]. Grid Schedulers should also

support advanced features such as (i) user requested job
priority (ii) advanced reservation of resources (iii) resource

usage limits enforced by administrators (iv) user specifiable

resource requirements. Several architectures are available to

reduce the complexity of the problem for particular

application scenarios. Generic features of enterprise grids,

high performance computing grids and global grids have

been identified to develop a scheduling instance for the

scheduling solutions [5].

In the grid system, an end user submits the job that has
to be executed with some constraints like job execution

deadline, cost for the execution and the time required for the

execution. Grid resource manager estimates the resource

requirements and provides the functionality for discovery

and publishing of resources as well as scheduling,

submission and monitoring of jobs [6]. Thus difference

performance goals of grid scheduling includes: maximizing

system throughput [7], maximizing resource utilization,

minimizing execution time [8], minimizing cost on the user

side and fulfilling economic constraints [9]. Thus this paper

focus on scheduling algorithms in grid environment based

on traditional as well as meta-heuristic techniques. The
remaining section of the paper is organized as follows:

Section II deals with the scheduling problems in grid

computing. Section III deals with types of grid scheduling.

Section IV deals with grid system performance and

scheduling optimization criteria. Section V deals with

resource utilization. Section VI deals with heuristics and

meta-heuristic methods for scheduling in grids and Section 7

concludes this paper.

II. SCHEDULING PROBLEMS IN GRID COMPUTING

Grid computing scheduling is NP hard because there are

many intervening parameters of scheduling. There are

several characteristics that make grid scheduling problems

different from distributed systems. The following are some

of the characteristics:

a. The dynamic structure of the Computational Grid: In
grid systems, computing resources for example the

processors, storage device etc., can take part in the

grid system or abort the grid at any time in a volatile

manner. This may be because of wilful nature of the

participants or volunteers or it can be due to loss of

connection because of internet failure.

b. Heterogeneity of resources: Grid systems are very

highly distributed and the computational resources are

very disparate, ranging from desktops, high

performance clusters, or Beowulf clusters, laptop or

even handheld computational resources. Current Grid
infrastructures are not yet much flexible but

Arun Baruah, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,407-410

© 2010, IJARCS All Rights Reserved 408

heterogeneity is among the most important

characteristics of existing grid system.

c. High heterogeneity of jobs: The tasks or the jobs to

existing grid systems are too diverse and

heterogeneous with respect to their computational

needs. They can be computing power intensive or data

intensive. Jobs could be very large applications or it

can be an atomic tasks. Grid systems cannot be

attentive of the tasks or jobs arriving in the grid.

d. Existence of local schedulers or resources: As the Grid

systems are developed with the help of many
organizations, research institutions and Universities;

there is a possibility of running local schedulers such

as Condor batch system.

III. TYPE OF GRID SCHEDULING

Different types of scheduling approach can be followed

because of the nature of Grid systems. We can have

independent scheduling, workflows, static and dynamic,

centralized, hierarchical and de-centralize, immediate and

batch mode, adaptive scheduling.

a. Independent Scheduling: Independent scheduling is

required in some specific applications and data

intensive computing where CPU is use intensively by

the application.
b. Grid workflows: In complex problem solving

mechanism in grid computing has several services. So
the dependency arises. There need a mechanism of

solving problems is called a grid workflows.
c. Centralized, hierarchical and decentralized

scheduling: More control of resources are possible in

centralized scheduling. The scheduler monitors the

systems resources and has knowledge of the systems,

but it suffers limited scalability because of the

centralized scheduling mechanism in the highly

distributed nature of grids. Whereas in decentralized

scheduling, all the resources i.e., computers attached

to the larger grids has no central schedulers. Here the
local scheduler plays an important role.

d. Static vs. dynamic scheduling: Dynamic Grid

scheduling is determined by two types i.e., the

dynamic of job execution and the other is the

dynamics of resources. Dynamic execution of jobs

means the execution of jobs is currently in the

preemptive mode or the execution of jobs has stopped

because of the interrupts from other job request of

high priority jobs. Under dynamic scheduling, the

resources can join or leaves the grid at any moment. It

can also be in an un-predictable way. Under the static

method, job is assigned once to a resource. In Static
method resource information and performance

parameters are assumed to be known. Depending on

how a job can be divided, relevant research can be

categorized into two different areas: divisible

workload scheduling [10 - 12], where they can divide

workload into arbitrary-sized pieces, and fixed-sized

independent tasks scheduling [13].

e. Immediate vs. batch mode scheduling heuristics:
Immediate and batch scheduling heuristics are useful

scheduling heuristic algorithm for Grids. Immediate

scheduling heuristics works immediately when any
jobs / tasks arrive, the immediate scheduling scheduler

schedules the jobs and executed with available

resources. Immediate scheduling heuristics includes

the minimum execution time scheduling algorithm, the

Opportunistic load balancing algorithm, the minimum

completion time algorithm, Min-min, Max-min

algorithm, Relative cost, Shortest job fast. Whereas in

the batch mode scheduling, grouping of jobs together

is done in batches and scheduled as a batch. In batch

mode system, it is advantageous in allocating and

distributing jobs based on available resources. It is

also one of a simple and powerful heuristics that are

distinguished for efficiency.
f. Adaptive Scheduling: As Grid computing

environment is evolving and it is becoming bigger and

bigger and is composed of many different types of

Grid resources, so now a more sophisticated

scheduling techniques are required. Dynamic

scheduling heuristics [14] is one of the most vital

scheduling heuristics that is concern for both current

status of the resources and predictions for the future

status with the motive of avoiding performance

degradation. Adaptive scheduling weakening can be

seen in Rescheduling heuristics in which running jobs
migrates to other available suitable resources. The

authors used NetSolve [15] as a test bed for evaluating

the proposed algorithm.

g. Adaptive Partitioning: Adaptive partitioning gives

each job a dedicated partition of the machine, where

the partition size is a compromise between the

scheduler and the job that takes both the job’s

requirements and the current load into account. Users

can specify a set of possible partition sizes when a job

is submitted, rather than demanding a single size. The

scheduler allocates the largest size that is available.
This has the desired outcome: The system

automatically allocates the largest size that is available

that is suitable for the job thus allowing it to start

running as soon as possible.

IV. GRID SYSTEM PERFORMANCE & SCHEDULING

OPTIMIZATION CRITERIA

In Grid scheduling processes, several optimization

criteria and performance requirements can be considered

which is multi-objective in its formulation. Optimization

objectives are to establish the overall Grid performance

criteria of the grid. The performance criteria includes the

utilization of resources like CPU, waiting time and response

time, throughput, turnaround time, load balancing.

Scheduling optimization criteria include: the makespan, the

flowtime, resource utilization, load balancing, matching

proximity, turnaround time, total weighted completion time,
lateness, weighted number of tardy jobs, weighted response

time, etc. Both performance criteria and optimization

criteria are desirable for any Grid system; however, their

achievement depends also on the considered model (batch

system, interactive systems etc). It is important to note that

these criteria are conflicting among them; for instance,

minimizing makespan conflicts with resource usage and

response time. An extensively studied optimization criteria

is the minimization of the makespan.

The productivity of the grid system is indicated by the

makespan where small values of makespan means
scheduling is providing robust and efficient utilizing of

tasks to the available resources. Another optimization

Arun Baruah, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 407-410

© 2010, IJARCS All Rights Reserved 409

criteria is the flowtime, which states to the response time of

the user submitted tasks executions. The average response

time of the grid system is reduced by minimizing the value

of the flowtime. We want to maximize the throughput of

the grid and at the same time also maintaining the Quality

of Service.

Makespan, completion time and flowtime: In grid

scheduling, it is aimed to minimize the makespan and

flowtime. Makespan is the time when finishes the latest

task and the flowtime is the sum of the finalization times of

all the tasks. Formally they can be defined as follows:
Minimization of makespan: minSi€ Sched {maxj€Jobs Fj }

and,

Minimization of flowtime: minSi € Sched{ ∑ i €Jobs Fj }

Whereas Fj means the time when the task j finalizes,

Sched is the set of all schedules and Jobs the set of all jobs

to be scheduled. Please note that makespan is not affected

by any particular order of execution of tasks. Tasks should

be executed in a ascending order of their workload

(computation time) in order to minimize flowtime of a

resource. m is the completion time in which m finalize the

previous assigned jobs and also planned tasks for the
machine.

The expression of makespan, flowtime and completion

time depends on the computational model. For instance, in

the ETC model, completion[m] is calculated as follows:

completion[m] = ready_times[m] + ∑ ETC[j][m]

{j€Tasks | schedule[j] = m}

where ready_times[m] is the time when machine m will

have finished the previously assigned tasks. Makespan can

be expressed in terms of the completion time of a resource,

as follows:

Makespan = max{completion[i] | I € Machines}
Flow_time utlilze completion times of machines in the

same way, but now by first sorting in ascending order as

per their ETC values assigned to the machine. Thus for

machine mCTR the flow_time flowtime[mCTR] can be

expressed as follows (S[mCTR] is a vector representing the

schedule for machine mCTR):

V. RESOURCE UTILIZATION

Another important objective of the grid system is the

maximization of resource utilization. Due to the

contribution of Grid resources by individuals or institutions

in exchange of economic benefits, this criterion is gaining

high importance.

Accomplishing a greater resource reutilization becomes

a challenge in Grid based systems gives the differences of

computational resources of the Grid. One of the possible

definition of this parameter is to consider the average
utilization of resources. For instance, in the ETC model, for

a schedule S, it can be defined as follows:

avg_utilization =

Matching Proximity: matching proximity could be

defined as the degree of proximity of a given schedule with

regard to the schedule produced by MET (minimum

execution time) method in ETC model. MET assigns the

jobs to the resources having smallest execution time for that

job. For a schedule S, matching proximity can be computed

as follows:

Matching-proximity =

Turnaround time: The elapsed time of computation,

from the submission of the first tasks to the completion of

the last task. Dominguez et al., considered this objective for

scheduling bags-of-tasks applications in the desktop Grids.

Kondo [16] characterized four real desktop grid systems

and designed scheduling heuristics based on the resource

prioritization, resource exclusion, and task replication for

fast application turnaround time.

VI. HEURISTICS AND META-HEURISTIC METHODS

FOR SCHEDULING IN GRIDS

From the above explanation, we are clear that the Grid

scheduling is highly challenging, dealing with many

optimization criteria. Meta-heuristics are now considered

the de facto approach to grid scheduling. The meaning of
Heuristic is “to find” and the word “Meta” means a broad

way, so meta-heuristic is to find in broad way. Many

libraries and frameworks are also developed and mentioned

in the literature. For example, Easy Local++, is one of the

available libraries which can be easily use for Grid

scheduling problems.

Local Search Based Heuristic Approaches - families are

Hill Climbing, Simulated Annealing (SA), Tabu Search

method. The Hill Climbing method is important for two

reasons: (1) in a very short time they can produce a feasible

solution of some quality and, (2) they can be initialized in

population-based meta-heuristics. Ritchie and Levine [17]
use several local search method in implementing Memetic

Algorithms for the same problem. Abraham et al. [16] have

proposed SA (simulated annealing) as more powerful

algorithm then local search by accepting worse solutions

with certain probability. Tabu Search is more sophisticated

and usually requires more computation time for computing

good solutions.

Opulation- Based Heuristic Approaches: large

combinatorial optimization problems can be effieicntly

solved by using population-based heuristic approach.

Population-based methods are: Genetic Algorithm (GA),
Memetic Algorithms (MA) Ant Colony Optimization

(ANZ) and Particle Swarm Optimization (ParticleZ).

Memetic Algorithms (MA) is a relatively new class of

population-based methods, which combine the concepts of

evolutionary search and local search by taking the

advantage of good characteristics of both of them.

An ant colony optimization for the problem is proposed

by Ritchie under ETC model. Abraham et al. [18] proposed

an approach for scheduling jobs on Computational Grids

using fuzzy Particle Swarm Optimization algorithm.

Hybrid Heuristics Approach: Meta-heuristic approaches

are hybrid approach. Ritchie and Levine combine ant
colony optimization (ANZ) with the Tabu Search (TS)

algorithm. In a basic unstructured Memetic Algorithms is

combined with 16 local search algorithms in order to

identify the base performance of the resultant Memetic

Algorithm. Simulated annealing and Tabu search heuristics;

the hybridization Genetic Algorithm + Simulated annealing

is expected to have a better convergence than pure Genetic

Algorithm search and the GA + TS could improve the

efficiency of the GA.

Genetic Algorithm heuristics: Genetic algorithm

heuristics have been developed by John Holland, his
colleagues, and his students at the University of Michigan.

The goals of their research have been twofold: (a) to

Arun Baruah, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,407-410

© 2010, IJARCS All Rights Reserved 410

abstract and rigorously explain the adaptive processes of

natural systems, and (b) to design artificial systems

software that retains the important mechanisms of natural

systems. Genetic Algorithm heuristics are an evolutionary

techniques that is used to search for optimal solution in a

very large space. Genetic algorithm heuristics are inspired

from human genetics and generally work by encoding the

problem in the form of chromosomes. Genetic algorithm

operators like crossover and mutations are applied and new

generations are evolved. Fitness is computed after every

generations and further exploration is stopped as soon as an
acceptable fitness value is achieved. Genetic algorithm

heuristics are now best known heuristics for scheduling.

Simulated Annealing heuristic techniques: Simulated

annealing heuristic technique is an iterative (looping)

technique that considers only one possible mapping for

each tasks at a time. This heuristic solution also uses the

same representation as the chromosome for the Genetic

Algorithm heuristics. Simulated annealing heuristic

technique uses a procedure that probabilistically allows

poorer solutions to be accepted to attempt to obtain a better

search for the solution space.

VII. CONCLUSION

This paper has given a detailed study on scheduling and

on taxonomy of scheduling has been given in different

perspectives. It is observed that the heuristic based
algorithms, in particular population based heuristics are

most suitable for scheduling the task in the grid

environment. But there are population based heuristics

which are complex in nature and takes a long execution

time. For instance, ant colony optimization (ANZ), when

run in a normal PC, it takes hours to execute an algorithm to

schedule more than 1000 processes. On the other hand this

algorithm gives better results compared to other population

based heuristics such as genetic algorithm, due to its longer

execution time of the algorithm, some other algorithm which

executes faster are considered.

VIII. REFERENCES

[1]. I. Foster and C. Kesselman. The Grid: Blueprint for a Future
Computing Infrastructure, Morgan Kaufmann Publishers,
USA, 1999.

[2]. Dr. K. Vivekanandan et al, D. Ramyachitra “A study on
Scheduling in Grid Environment” International Journal On

Computer Science and Engineering (IJCSE) Vol.3 No.2 Feb
2011, pp. 940 – 950.

[3]. Harumasa Tada, Makoto Imase, Masayuki Murata, “On the
Robustness of the Soft State for Task Scheduling in Large-

scale Distributes Computing Rnvironment,” Proceedings of
the International Multiconference on Computer Science and
Information Technology, pp. 475 – 480, 2008.

[4]. Yanmin Zhu, Lijuan Xiao, Lionel M. Ni, Zhiwei Xu,
“Incentve Based P2P Scheduling in Grid Computing, “ Grid

and Cooperative Computing, LNCS 3251, Springer Verlag,
pp. 209 – 216, 2004

[5]. N. Tonellotto, R. Yahyapour, Ph. Wieder, “A Proposal for a
Generic Grid Scheduling Architecture”, CoreGRID Technical
Report, Number TR-0015, Jan. 11, 2006.

[6]. Ajith Abraham, Hongbo Liu, Weishi Zhang, and Tae-Gyu
Chang, “Scheduling Jobs on Computational Grids Using
Particle Swarm Algorithm”, 10th International Conference on

Knowledge-Based Intelligent Information and Engineering
Systems, UK, 2006, pp.500-507

[7]. Michael Litzkow, Miron Livny, and Matt Mutka, “Condor-A
Hunter of Idle Workstations”, In Proceedings of Eight

International Conference of Distributed Computing Systems,
California, June, 1988, pp. 204 – 211

[8]. David Abramson, Rock Sosic, J. Giddy, B. Hall, “Nimrod: A
tool for performing parameterised simulation using distributed
workstations”, In HPDC, pp 121 – 121, 1995

[9]. Rajkumar Buyya, David Abramson, Jonathan Giddy,
“Nimrod/G: An Architecture for a Resource Management and
Scheduling System in a Global Computational Grid”, The 4th

International Conferrence on High Performance Computing in
Asia-Pacific Region (HPC Asia 2000), May 2000, Beijing,
China, IEEE Computer Society Press, USA

[10]. O. Beaumont, A. Legrand, Y. Robert, “Seheduling divisible

workloads on heterogeneous platforms”, Parallel Computing,
29(9), September 2003, pp 1121-1152

[11]. T. Robertazzi, “Ten Reasons to Use Divisible Load Theory”,
Computer, 36(5), May 2003.

[12]. V. Bharadwaj, D. Ghose, V. Mani, T. Robertazzi, “Scheduling
Divisible Loads in Parallel and Distributed Systems”, IEEE
Computer Society Press, Los Alamitos, CA, Sept. 1996

[13]. T. D. Braun, H. J. Siegel, N. Beck, “A Comparision of Eleven
Static Heuristics for Mapping a Class of Independent Tasks
onto Heterogeneous Distributed Computing Systems”, Journal
of Parallel and Distributed Computing, 2001

[14]. I. Foster, C. Kesselman, S. Tuecke, “The Anatomy of Grid:
Enabling Scalable Virtual Organizations”, International
Journal of Supercomputer Applications, 2001

[15]. I. Foster and C. Kesselman (editors), “The Grid: Blueprint for
a Future Computing Infrastructure”, Morgan Kaufmann
Publishers, USA, 1999.

[16]. Kondo, D., Chien, A., Casanova, H, “ Scheduling Task
Parallel Applications for Rapid Turnaround on Enterprise
Desktop Grids”, Journal of Grid Computing 5(4), 379-405
(2007).

[17]. Casanova, H., Kim, M., Plank, J.S., Dongarra, J.J, ” Adaptive
Scheduling for Task Farming with Grid Middleware”, Int. J.
High Perform. Comput. Apple. 13(3), 231-240 (1999)

[18]. A. Abraham, H. Liu, W. Zhang, T.G. Chang, Scheduling Jobs

on Computational Grids Using Fuzzy Particle Swarm
Algorithm, Springer-Verlag Berlin Heidelberg (2006) 500-
507.

